Citation: | LI Jun, XIAO Di, WEN Xiang, ZHAO Yajie. Coordinated Optimization Method for Feeder Container Ship Route Planning and Stowage Based on DQN Algorithm[J]. Journal of Transport Information and Safety, 2023, 41(6): 132-141. doi: 10.3963/j.jssn.1674-4861.2023.06.015 |
[1] |
OVSTEBO B, HVATTUM L, FAGERHOLT K. Routing and scheduling of RoRo ships with stowage constraints[J]. Transportation Research Part C: Emerging Technologies, 2011, 19 (6): 1225-1242. doi: 10.1016/j.trc.2011.02.001
|
[2] |
陈忱. 最优航线调度和集装箱船舶配载计划的决策支持系统[D]. 天津: 天津理工大学, 2012.
CHEN Y. Decision support system for optimal route scheduling and container ship stowage planning[D]. Tianjin: Tianjin University of Technology, 2012. (in Chinese)
|
[3] |
MOURA A, OLIVEIRA J, PIMENTEL C. A mathematical model for the container stowage and ship routing problem[J]. Journal of Mathematical Modelling and Algorithms in Operations Research, 2013, 12(3): 217-231. doi: 10.1007/s10852-012-9207-3
|
[4] |
MOURA A, OLIVEIRA J. Exact solutions to the short sea shipping distribution problem[C]. IO 2013-XVI Congress of APDIO, Braganca, Portugal: Operational Research, 2015.
|
[5] |
JI M, KONG L, GUAN Y. Integrated optimization of feeder routing and stowage planning for containerships[J]. Soft Computing, 2021, 25(1): 4465-4487.
|
[6] |
CHRISTIANSEN M, NYGREEN B. A method for solving ship routing problems with inventory constraints[J]. Annals of Operations Research, 1998, 81(6): 357-378.
|
[7] |
AGARWAL R, ERGUN O. Ship scheduling and network design for cargo routing in linear shipping[J]. Transportation Science, 2008, 42(2): 175-196. doi: 10.1287/trsc.1070.0205
|
[8] |
KIM J, SON H, YANG W, et al. Liner ship routing with speed and fleet size optimization[J]. Journal of Civil Engineering, 2019, 23(3): 1341-1350.
|
[9] |
CHARALAMBOPOULOS N, NEARCHOU C. Ship routing using genetic algorithms[J]. Operations Research Forum, 2021, 2(45): 1-26.
|
[10] |
计明军, 陈哲, 王清斌. 集装箱船舶支线运输航线优化算法[J]. 交通运输工程学报, 2011, 11(4): 68-75. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201104010.htm
JI M J, CHEN Z, WANG Q B. Optimization algorithm of branch transportation route for container ship[J]. Journal of Traffic and Transportation, 2011, 11(4): 68-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201104010.htm
|
[11] |
郑红星, 李珊珊, 司羽. 内支线配船与船舶调度优化[J]. 重庆交通大学学报(自然科学版), 2019, 38(2): 109-116. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201902016.htm
ZHENG H X, LI S S, SI Y. Internal feeder ship allocation and ship dispatching optimization[J]. Journal of Chongqing Jiaotong University(Natural Science), 2019, 38(2): 109-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201902016.htm
|
[12] |
AMBROSINO D, SCIOMACHEN A, TANFANI E. Stowing a containership: the master bay plan problem[J]. Transportation Research Part A: Policy & Practice, 2004, 38(2): 81-99.
|
[13] |
AMBROSINO D, PAOLUCCI M, SCIOMACHEN, A. Experimental evaluation of mixed integer programming models for the multi-port master bay plan problem[J]. Flexible Services & Manufacturing Journal, 2015, 27(2-3): 263-284.
|
[14] |
MARIA M, MARCELLO S, GREGORIO S. The terminal-oriented ship stowage planning problem[J]. European Journal of Operational Research, 2014, 239(1): 256-265. doi: 10.1016/j.ejor.2014.05.030
|
[15] |
张华胜. 基于深度强化学习的自动化码头跨运车集成调度研究[D]. 上海: 上海海事大学, 2022.
ZHANG H S. Research on integrated scheduling of shuttle carriers in automated terminals based on deep reinforcement[D]. Shanghai: Shanghai Maritime University, 2022. (in Chinese)
|
[16] |
段振堂. 基于深度强化学习的集装箱堆叠优化算法研究[D]. 济南: 山东大学, 2023.
DUAN Z T. Research on container stacking optimization algorithm based on deep reinforcement learning[D]. Jinan: Shandong University, 2023. (in Chinese)
|
[17] |
李俊. 内河集装箱班轮航线配载决策研究[D]. 武汉: 武汉理工大学, 2019.
LI J. Route stowage planning decision for inland container liner shipping[D]. Wuhan: Wuhan University of Technology, 2019. (in Chinese)
|
[18] |
HAN B A, YANG J J. Research on adaptive job shop scheduling problems based on dueling double DQN[J]. IEEE Access, 2020(8): 186474-186495.
|
[19] |
GU B, SUNG Y. Enhanced DQN framework for selecting actions and updating replay memory considering massive non-executable actions[J]. Applied Sciences, 2021, 11(23): 1-15.
|
[20] |
尹星, 张煜, 郑倩倩, 等. 基于深度强化学习的自动化集装箱码头集成调度方法[J]. 交通信息与安全, 2022, 40(6): 81-91. doi: 10.3963/j.jssn.1674-4861.2022.06.009?viewType=HTML
YIN X, ZHANG Y, ZHENG Q Q, etal. A study of integrated scheduling of automated container terminal based on DDQN[J]. Journal of Transport Information and Safety, 2022, 40(6): 81-91. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.06.009?viewType=HTML
|
[21] |
YANG Y, LI J T, PENG L L. Multi-robot path planning based on a deep reinforcement learning DQN algorithm[J]. CAAI Transactions on Intelligence Technology, 2020, 5(3): 117-183.
|