Citation: | WENG Jiancheng, CHEN Xurui, PAN Xiaofang, SUN Yuxing, CHAI Jiaolong. A Forecasting Method for Arrival Passenger Flow Based on Hyperparametric Optimization WOA-Bi-LSTM Model for Passenger Hubs[J]. Journal of Transport Information and Safety, 2023, 41(5): 148-157. doi: 10.3963/j.jssn.1674-4861.2023.05.015 |
[1] |
汪鸣, 向爱兵, 杨宜佳. "十四五"我国交通运输发展思路[J]. 北京交通大学学报(社会科学版), 2022, 21(2): 68-75.
WANG M, XIANG A B, YANG Y J. Analysis of China's transportation development during the 14th Five-Year plan period[J]. Journal of Beijing Jiaotong University(Social Sciences Edition), 2022, 21(2): 68-75. (in Chinese)
|
[2] |
北京交通发展研究院. 2021北京市交通发展年度报告[R]. 北京: 北京交通发展研究院, 2021.
Beijing Transport Institute. 2021 Beijing transportation development annual report[R]. Beijing: Beijing Transport Institute, 2021. (in Chinese)
|
[3] |
祈伟, 刘清祥, 赵宁宇. 深圳福田综合交通枢纽客流预测研究[C]. 2014第九届中国智能交通年会大会, 北京: 中国智能交通协会, 2014.
QI W, LIU Q X, ZHAO N Y. Research on the prediction of passenger flow of Shenzhen Futian comprehensive transportation hub[C]. The 9th Annual China Intelligent Transportation Conference 2014, Beijing: China Intelligent Transportation Systems Association, 2014. (in Chinese)
|
[4] |
白丽. 城市轨道交通常态与非常态短期客流预测方法研究[J]. 交通运输系统工程与信息, 2017, 17(1): 127-135.
BAI L. Urban rail transit normal and abnormal short-term passenger flow forecasting method[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(1): 127-135. (in Chinese)
|
[5] |
HABTEMICHAEL G F, CETIN M. Short-term traffic flow rate forecasting based on identifying similar traffic patterns[J]. Transportation Research Part C: Emerging Technologies, 2016, 66: 61-78. doi: 10.1016/j.trc.2015.08.017
|
[6] |
谢俏, 叶红霞. 基于支持向量机的节假日进出站客流预测方法[J]. 城市轨道交通研究, 2018, 21(8): 26-29, 35.
XIE Q, YE H X. Forecast for holiday passenger flow at urban rail transit station based on support vector machine model[J]. Urban Mass Transit, 2018, 21(8): 26-29, 35. (in Chinese)
|
[7] |
戢晓峰, 孔晓丽, 陈方, 等. 基于ETC数据和A-BiLSTM神经网络的高速公路节假日短时交通流预测模型[J]. 交通信息与安全, 2023, 41(3): 166-174. doi: 10.3963/j.jssn.1674-4861.2023.03.018
JI X F, KONG X L, CHEN F, et al. A forecasting model of short-term traffic flow on expressways during holidays based on ETC data and A-BiLSTM neural network models[J]. Journal of Transport Information and Safety, 2023, 41(3): 166-174. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.03.018
|
[8] |
李洪嘉, 姚红光, 李思睿, 等. 基于灰色-神经网络的虹桥综合交通枢纽客流预测[J]. 科学技术创新, 2020(36): 121-122. doi: 10.3969/j.issn.1673-1328.2020.36.053
LI H J, YAO H G, LI S R, et al. Grey-neural network based passenger flow prediction for Hongqiao integrated transportation hub measurement[J]. Scientific Technological Innovation, 2020(36): 121-122. (in Chinese) doi: 10.3969/j.issn.1673-1328.2020.36.053
|
[9] |
PRATAP A S, AJAY T, KUMAR R D, et al. Prediction of passenger flow for north central railway region through ANN[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1136(1): 7.
|
[10] |
ZHANG Z H, HAN Y, PENG T X, et al. A comprehensive spatio-temporal model for subway passenger flow prediction[J]. ISPRS International Journal of Geo-Information, 2022, 11(6): 1.
|
[11] |
朱兆坤, 李金宝. 多特征信息融合LSTM-RNN检测OSA方法[J]. 计算机研究与发展, 2020, 57(12): 2547-2555.
ZHU Z K, LI J B. Multi-feature information fusion LSTM-RNN detection for OSA[J]. Journal of Computer Research and Development, 2020, 57(12): 2547-2555. (in Chinese)
|
[12] |
胡洪滔. 基于LGB-LSTM-DRS的对外客运枢纽城市轨道交通客流短时预测[D]. 北京: 北京交通大学, 2020.
HU H T. Short-term prediction of passenger flow of urban rail transit under external transportation hub based on LGB-LSTM-DRS model[D]. Beijing: Beijing Jiaotong University, 2020. (in Chinese)
|
[13] |
YUE M, MA S H. LSTM-based transformer for transfer passenger flow forecasting between transportation integrated hubs in urban agglomeration[J]. Applied Sciences, 2023, 13(1): 1.
|
[14] |
MULERIKKAL J, THANDASSERY S, REJATHALAL V, et al. Performance improvement for metro passenger flow forecast using spatio-temporal deep neural network[J]. Neural Computing and Applications, 2021, 34(2): 12.
|
[15] |
张维, 袁绍欣, 陶建军, 等. 基于多元因素的Bi-LSTM高速公路交通流预测[J]. 计算机系统应用, 2021, 30(6): 184-190.
ZHANG W, YUAN S X, TAO J J, et al. Bi-LSTM expressway traffic flow prediction based on multiple factor data[J]. Computer Systems & Application, 2021, 30(6): 184-190. (in Chinese)
|
[16] |
吕秋霞, 钟晓情, 任雅思. 基于Bi-LSTM网络的广珠城际短期客流预测方法[J]. 五邑大学学报(自然科学版), 2022, 36(1): 0-56.
LYU Q X, ZHONG X Q, REN Y S. A short-term passenger flow prediction method for Guangzhou-Zhuhai intercity railway based on Bi-LSTM network[J]. Journal of Wuyi University(Natural Science Edition), 2022, 36(1): 0-56. (in Chinese)
|
[17] |
郭彦茹, 王家川. 面向交通行业的地理信息管理与服务平台研究[J]. 北京测绘, 2020, 34(5): 600-605.
GUO Y R, WANG J C. Research on geographic information management and service platform for transportation industry[J]. Beijing Surveying and Mapping, 2020, 34(5): 600-605. (in Chinese)
|
[18] |
TRIPATHI S, SINGH S K, LEE H K. An end-to-end breast tumour classification model using context-based patch modelling-a Bi-LSTM approach for image classification[J]. Computerized Medical Imaging and Graphics, 2021, 87: 101838.
|
[19] |
胡周. 分布式鲸鱼优化算法的应用研究[D]. 武汉: 湖北工业大学, 2020.
HU Z. Application research of distributed whale optimization algorithm[D]. Wuhan: Hubei University of Technology, 2020. (in Chinese)
|
[20] |
孙经伟, 谷远利. 基于BO-FCM和PSO-XGBoost的城市快速路交通状态识别[J]. 交通运输研究, 2023, 9(4): 64-71.
SUN J W, GU Y L. Traffic state recognition on urban expressways based on BO-FCM and PSO-XGBoost[J]. Transportation Research, 2023, 9(4): 64-71. (in Chinese)
|