Citation: | CUI Bingyan, LI He, CUI Zhe, JI Haojie, GUAN Yuxin. A Review of Safety Studies on Lane Change Decision-makings for Connected Automated Vehicles[J]. Journal of Transport Information and Safety, 2023, 41(4): 1-13. doi: 10.3963/j.jssn.1674-4861.2023.04.001 |
[1] |
ZHENG Z D. Recent developments and research needs in modeling lane changing[J]. Transportation Research Part B: Methodological, 2014, 60(1): 16-32.
|
[2] |
WINSUM W, WAARD D, BROOKHUIS K A. Lane change manoeuvres and safety margins[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 1999, 2 (3): 139-149. doi: 10.1016/S1369-8478(99)00011-X
|
[3] |
PANDE A, ABDELATY M. Assessment of freeway traffic parameters leading to lane-change related collisions[J]. Accident Analysis & Prevention, 2006, 38(5): 936-948.
|
[4] |
ZHU S, AKSUN-GUVENC B. Trajectory planning of autonomous vehicles based on parameterized control optimization in dynamic on-road environments[J]. Journal of Intelligent and Robotic Systems, 2020, 100(4): 1055-1067.
|
[5] |
靳雅寓, 何赏璐, 苏宁, 等. 智能网联车专用车道对人工驾驶车的影响分析[C]. 2022世界交通运输大会. 武汉: 中国公路学会, 2022.
JIN Y Y, HE S L, SU N, et al. Analysis of the influence of intelligent connected vehicle special lane on artificial driving vehicles[C]. 2022 World Transport Congress. Wuhan, CHINA: China Highway Society, 2022. (in Chinese)
|
[6] |
YU H T, TSENG H E, LANGARI R. A human-like game theory-based controller for automatic lane changing[J]. Transportation Research Part C: Emerging Technologies, 2018, 88(1): 140-158.
|
[7] |
张羽翔, 何钢磊, 李鑫, 等. 基于参数描述的换道场景自动驾驶精确决策学习[J]. 同济大学学报(自然科学版), 2021, 49(增刊1): 132-140. doi: 10.11908/j.issn.0253-374x.22787
ZHANG Y X, HE G L, LI X, et al. Precise decision-making learning for autonomous driving in lane change scenarios based on parameter description[J]. Journal of Tongji University (Natural Science Edition), 2021, 49(S1): 132-140. (in Chinese) doi: 10.11908/j.issn.0253-374x.22787
|
[8] |
杨龙海, 罗沂, 徐洪. 基于GPS定位数据的高速公路换道特征分析与行为识别[J]. 北京交通大学学报, 2017, 41(3): 39-46. doi: 10.3969/j.issn.1672-8106.2017.03.005
LUO L H, LUO Y, XU H. Highway lane change feature analysis and behavior recognition based on GPS positioning data[J]. Journal of Beijing Jiaotong University, 2017, 41(3): 39-46. (in Chinese) doi: 10.3969/j.issn.1672-8106.2017.03.005
|
[9] |
SUN D, ELEFTERIADOU L. Lane-changing behavior on urban streets: an "in-vehicle" field experiment-based study[J]. Computer-aided Civil and Infrastructure Engineering, 2012, 27(7): 525-542. doi: 10.1111/j.1467-8667.2011.00747.x
|
[10] |
SCHMIDT K, BEGGIATO M, HOFFMANN HEINZ K, et al. A mathematical model for predicting lane changes using the steering wheel angle[J]. Journal of Safety Research, 2014, 49(1): 85-90.
|
[11] |
AHMED I, KARR AF, ROUPHAIL NM, et al. Characterizing lane changing behavior and identifying extreme lane changing traits[J]. Transportation Letters the International Journal of Transportation Research, 2022, 15(5): 450-464.
|
[12] |
WINSUM V, WAARD D, BROOKHUIS K. Lane change manoeuvres and safety margins[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 1999, 2(3): 139-149. doi: 10.1016/S1369-8478(99)00011-X
|
[13] |
MAI T, JIANG R, CHUNG E. A cooperative intelligent transport systems(C-ITS)-based lane-changing advisory for weaving sections[J]. Journal of Advanced Transportation, 2016, 50(5): 752-768. doi: 10.1002/atr.1373
|
[14] |
张艺还. 车路协同环境下突发事件救援车辆路径规划算法研究[D]. 北京: 北京交通大学, 2019.
ZHANG Y H. Research on route planning algorithm for emergency rescue vehicles under the environment of connected vehicle[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
|
[15] |
ZHENG Z D. Recent developments and research needs in modeling lane changing[J]. Transportation Research Part B: Methodological, 2014, 60(1): 16-32.
|
[16] |
CICCHINO J B. Effects of blind spot monitoring systems on police-reported lane-change crashes[J]. Traffic Injury Prevention, 2018, 19(6): 615-622. doi: 10.1080/15389588.2018.1476973
|
[17] |
YOO J, LANGARI R, A predictive perception model and control strategy for collision-free autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(11): 4078-4091. doi: 10.1109/TITS.2018.2880409
|
[18] |
NI J, HAN J W, LIU Z Q, et al. Situation assessment for lane-changing risk based on driver's perception of adjacent rear vehicles[J]. International Journal of Automotive Technology, 2020, 21(2): 427-439. doi: 10.1007/s12239-020-0040-9
|
[19] |
HUANG H Y, WANG J Q, FEI C, et al. A probabilistic risk assessment framework considering lane-changing behavior interaction[J]. Science China Information Sciences, 2020, 63 (9): 1-19.
|
[20] |
JOO Y J, PARK H C, KHO S Y, et al. Reliability-based assessment of potential risk for lane-changing maneuvers[J]. Transportation Research Record, 2021, 2675(10): 161-173. doi: 10.1177/03611981211010800
|
[21] |
LI G F, YANG Y F, ZHANG T R, et al. Risk assessment based collision avoidance decision-making for autonomous vehicles in multi-scenarios[J]. Transportation Research Part C: Emerging Technologies, 2021, 122(1): 102820.
|
[22] |
ARUN A, HAQUE M M, WASHINGTON S, et al. How many are enough? Investigating the effectiveness of multiple conflict indicators for crash frequency-by-severity estimation by automated traffic conflict analysis[J]. Transportation Research Part C: Emerging Technologies, 2022, 138(1): 103653.
|
[23] |
JIANG R X, ZHU S Y, CHANG H G, et al. Determining an improved traffic conflict indicator for highway safety estimation based on vehicle trajectory data[J]. Sustainability, 2021, 13(16): 9278. doi: 10.3390/su13169278
|
[24] |
XING L, HE J, ABDEL M, et al. Examining traffic conflicts of upstream toll plaza area using vehicles' trajectory data[J]. Accident Analysis & Prevention, 2019, 125(1): 174-187.
|
[25] |
XING L, HE J, LI Y, et al. Comparison of different models for evaluating vehicle collision risks at upstream diverging area of toll plaza[J]. Accident Analysis & Prevention, 2020, 135(1): 105343.
|
[26] |
HARDING J, POWELL G, YOON R, et al. Vehicle-to-vehicle communications: readiness of V2V technology for application[M]. United States: National Highway Traffic Safety Administration, 2014.
|
[27] |
REN S J, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 15(18): 137-146.
|
[28] |
GIPPS P G. A model for the structure of lane-changing decisions[J]. Transportation Research Part B: Methodological, 1986, 20(5): 403-414. doi: 10.1016/0191-2615(86)90012-3
|
[29] |
YANG Q I, KOUTSOPOULOS H N. A microscopic traffic simulator for evaluation of dynamic traffic management systems[J]. Transportation Research Part C: Emerging Technologies, 1996, 4(3): 113-129. doi: 10.1016/S0968-090X(96)00006-X
|
[30] |
DING J Y, LI L, PENG H, et al. A rule-based cooperative merging strategy for connected and automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(8): 3436-3446.
|
[31] |
JIN C J, KNOOP V L, LI D W, et al. Discretionary lane-changing behavior: empirical validation for one realistic rule-based model[J]. Transportmetrica A-Transport Science, 2019, 15 (2): 224-262.
|
[32] |
SHAO Y, DENG X F, SONG J X, et al. Lane-changing model of intelligent connected vehicle considering the factor of turn signal[J]. Journal of Advanced Transportation, 2022, 11 (1): 4357954.
|
[33] |
ZHANG J Y, LIAO Y P, HAN J, et al. Lane changing models based on artificial potential field[C]. IEEE 2017 Chinese Automation Congress, Jinan, CHINA: IEEE, 2017.
|
[34] |
AHMED K I, BENAKIVA M E, KOUTSOPOULOS, et al. Models of freeway lane changing and gap acceptance behavior[J]. Transportation and Traffic Theory, 1996, 1(13): 501-515.
|
[35] |
TOLEDO T, KOUTSOPOULOS H. BEN-AKIVA M. Modeling integrated lane-changing behavior[J]. Transportation Research Record Journal of the Transportation Research Board, 2003, 1(1857): 30-38.
|
[36] |
SUN D J, ELEFTERIADOU L. Lane-changing behavior on urban streets: an"in-vehicle"field experiment-based study[J]. Computer Aided Civil and Infrastructure Engineering, 2012, 27(7): 525-542.
|
[37] |
SUN D J. A lane-changing model for urban arterial streets[D]. Gainesville: University of Florida, 2009.
|
[38] |
SINGH K, LI B B. Discrete choice modelling for traffic densities with lane-change behaviour[C]. 8th International Conference on Traffic and Transportation Studies, Beijing, CHINA: IEEE, 2012.
|
[39] |
WANG Z H, CUI S M, YU T Y. Automatic lane change control for intelligent connected vehicles[C]. 4th International Conference on Electromechanical Control Technology and Transportation, Guilin, CHINA: IEEE, 2019.
|
[40] |
ZHENG J, SUZUKI K, FUJITA M. Predicting driver's lane-changing decisions using a neural network model[J]. Simulation Modelling Practice and Theory, 2014, 42(1): 73-83.
|
[41] |
PENG J S, GUO Y S, FU R, et al. Multi-parameter prediction of drivers' lane-changing behaviourwith neural network model[J]. Applied Ergonomics, 2015, 50(1): 207-217.
|
[42] |
MA K, WANG H. Lane-changing decision model for connected and automated vehicle based on back-propagation neural network[C]. International Conference on Transportation and Development, Washington, D. C., USA: IEEE, 2020.
|
[43] |
DONG C Y, LIU Y J, WANG H, et al. Modeling lane-changing behavior based on a joint neural network[J]. Machines, 2022, 10(2): 109-126.
|
[44] |
LI Y M, ZHANG J, SUN H. Lane change decision-making for autonomous vehicles based on a hybrid model of deep learning and rule-based methods[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(2): 702-712.
|
[45] |
REN G Q, ZHANG Y, LIU H, et al. A new lane-changing model with consideration of driving style[J]. International Journal of Intelligent Transportation Systems Research, 2019, 17(3): 181-189.
|
[46] |
CHEN J Y, FENG Y H, YAN M Y. A deep reinforcement learning-based lane change system for autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 1980-1991.
|
[47] |
KANG K, RAKHA H A. A repeated game freeway lane changing model[J]. Sensors, 2020, 20(6): 1554.
|
[48] |
DING N, MARIA A, MENG X H, et al. Mandatory lane change strategy in vanet based on coordinated stackelberg game model[C]. 2020 Chinese Control and Decision Conference, Hefei, CHINA: IEEE, 2021.
|
[49] |
ZHENG Y, DING W T, RAN B, et al. Coordinated decisions of discretionary lane change between connected and automated vehicles on freeways: a game theory-based lane change strategy[J]. IET Intelligent Transport Systems, 2020, 14(13): 1864-1870.
|
[50] |
QU D Y, ZHANG K K, SONG H, et al. Analysis and modeling of lane-changing game strategy for autonomous driving vehicles[J]. IEEE Access, 2022, 10(1): 69531-69542.
|
[51] |
JI Y P, ZHANG J, WU K R, et al. Optional lane-changing of intelligent vehicles based on vehicle-to-vehicle communication[J]. Journal of Command and Control, 2022, 7(4): 389-396.
|