Volume 40 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
YUAN Xueli, YANG Juhua, REN Jinhui. A Path Optimization Method for Sea-Rail Intermodal Container Transport Under Random Transit Time[J]. Journal of Transport Information and Safety, 2022, 40(6): 106-117. doi: 10.3963/j.jssn.1674-4861.2022.06.011
Citation: YUAN Xueli, YANG Juhua, REN Jinhui. A Path Optimization Method for Sea-Rail Intermodal Container Transport Under Random Transit Time[J]. Journal of Transport Information and Safety, 2022, 40(6): 106-117. doi: 10.3963/j.jssn.1674-4861.2022.06.011

A Path Optimization Method for Sea-Rail Intermodal Container Transport Under Random Transit Time

doi: 10.3963/j.jssn.1674-4861.2022.06.011
  • Received Date: 2022-04-16
    Available Online: 2023-03-27
  • In the process of sea-rail intermodal transportation, containers are subject to various uncertainties, resulting in time fluctuation, which affects cargo delivery punctuality. To effectively reduce the impact of uncertain transportation time, the economics and green sustainability of the transportation process are considered to optimize the container flow path of sea-rail intermodal transport. A multi-objective model with the least total transportation costs and the lowest carbon emissions is established by stochastic chance-constrained programming. Rail and ocean expected arrival times are introduced into the constraint conditions. And the paths that exceed the expected arrival times are penalized to ensure the superiority of the transportation paths. Consider two modes of transportation organization: one-stop direct delivery and intermediate loading, to overcome the shortcomings of existing studies that do not consider the adequacy of cargo sources. The uncertainty constraints are transformed into linear constraints using the knowledge of uncertainty and probability theory-related theories. The NSGA-Ⅱ algorithm is used to solve the problem of container cargo outbound route optimization from Xi'an to Los Angeles. The initialization population is improved by the greedy algorithm and the elite selection operator is improved by the probabilistic selection operator based on logistics distribution. The following results are obtained through comparative analysis: ①The total costs of transportation are reduced by $231 500 and carbon emissions by 6.69 t after algorithm optimization, while the speed of algorithm solution is increased by 75.36%. ②By comparing the fuzzy programming with the stochastic programming chosen for the model in this paper, it is found that the number of stochastic programming solution sets is more than the fuzzy programming. The total transportation costs and carbon emissions in the same transport path for both are optimized by 10.65% in the stochastic programming. Therefore, the model and algorithm in this paper have positive optimization effects. Finally, sensitivity analysis is performed to observe the impact of confidence level as well as time influence coefficient on the objective function and cargo delivery punctuality. The results show that: ①Higher levels of confidence in rail and sea transport will increase the total costs of transporting goods.② Time impact factor and cargo delivery on-time rate are negatively correlated. The higher the impact factor, the lower the cargo delivery on-time rate.

     

  • loading
  • [1]
    赵祎. 随机环境下集装箱海铁联运系统建模与优化研究[D]. 北京: 北京交通大学, 2019.

    ZHAO Y. Research on modelling and optimisation of sea-rail intermodal transportation system under stochastic circumstance[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
    [2]
    张丰婷, 杨菊花, 于江, 等. 基于海铁联运的集装箱班列服务路径优化[J]. 交通信息与安全, 2021, 39(4): 125-133. doi: 10.3963/j.jssn.1674-4861.2021.04.016

    ZHANG F T, YANG J H, YU J, et al. Optimization of container train service route based on sea-rail intermodal transportation[J]. Journal of Transport Information and Safety, 2021, 39(4): 125-133. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.04.016
    [3]
    王琴, 杨信丰, 李楠, 等. 不确定环境下的危险品运输车辆路径优化[J]. 计算机工程与应用: 2022, 58(15): 309-316. doi: 10.3778/j.issn.1002-8331.2201-0137

    WANG Q, YANG X F, LI N, et al. Route optimization of hazardous materials transportation vehicles in uncertain environment[J]. Computer Engineering and Applications, 2022, 58(15): 309-316. (in Chinese) doi: 10.3778/j.issn.1002-8331.2201-0137
    [4]
    SUN H L, WANG Y, XUE Y F. A bi-objectiverobust optimization model for disaster response planning under uncertainties[J]. Computers & Industrial Engineering, 2021, 155(3): 107213.
    [5]
    ZHANG L, LIU Z S, YU L, et al. Routing optimization of shared autonomous electric vehicles under uncertain travel time and uncertain service time[J]. Transportation Research Part E: Logistics and Transportation Review, 2022(157): 102548.
    [6]
    汤兆平, 秦进, 孙剑萍, 等. 不确定条件下铁路应急资源调度多目标优化方法研究[J]. 铁道学报, 2018, 40(1): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201801003.htm

    TANG Z P, QIN J, SUN J P, et al. Multi-objective optimization method for dispatching of railway emergency resources under uncertainty conditions[J]. Journal of the China Railway Society, 2018, 40(1): 9-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201801003.htm
    [7]
    DEMIE E, BURGHOLZER W, HRUSOVSKY M, et al. A green intermodal service network design problem with travel time uncertainty[J]. Transportation Research Part B: Methodological, 2016(93): 789-807.
    [8]
    LAM J, GU Y. A market-oriented approach for intermodal network optimisation meeting cost, time and environmental requirements[J]. International Journal of Production Economics, 2016(171): 266-274.
    [9]
    孙家庆, 王胜男, 闫淑贤. 考虑碳排放的冷藏集装箱多式联运路径选择[J]. 大连海事大学学报, 2022, 48(2): 57-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS202202007.htm

    SUN J Q, WANG S N, YAN S X. Path selection of multimodal transport for refrigerated containers considering carbon emission[J]. Journal of Dalian Maritime University, 2022, 48(2): 57-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS202202007.htm
    [10]
    邱玉琢, 张磊. 碳排放规制下生鲜农产品配送车辆路径优化问题[J]. 南京财经大学学报, 2021(1): 68-78. https://www.cnki.com.cn/Article/CJFDTOTAL-NJJJ202101007.htm

    QIU Y Z, ZHANG L. Vehicle routing perfection for fresh agricultural products distribution under carbon emission regulation[J]. Journal of Nanjing University of Finance and Economics, 2021(1): 68-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJJJ202101007.htm
    [11]
    刘倚玮, 赵章荣. 考虑碳排放的多目标绿色多式联运路径优化[J]. 计算机仿真, 2022, 39(5): 145-149. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ202205028.htm

    LIU Y W, ZHAO Z R. Optimization of multi-objective green multimodal transport path considering carbon emission[J]. Computer Simulation, 2022, 39(5): 145-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ202205028.htm
    [12]
    邱金红, 孙靖, 仲兆满. 基于配送收益均衡的多目标绿色车辆路径优化算法[J/OL]. (2021-12-03)[2022-07-26]. http://kzyjc.alljournals.cn/kzyjc/article/abstract/2021-0669

    QIU J H, SUN J, ZHONG Z M. A multi-objective green vehicler outing optimization algorithm based on delivery benefit balance[J/OL]. (2021-12-03)[2022-11-21]. http://kzyjc.alljournals.cn/kzyjc/article/abstract/2021-0669
    [13]
    徐慧英, 赵建民, 张泳, 等. 改进NSGA-Ⅱ算法在车辆路径多目标优化问题中的应用[J]. 计算机工程与科学, 2010, 32(10): 117-121. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJK201010031.htm

    XU H Y, ZHAO J M, ZHANG Y, et al. Application of the improved NSGA-Ⅱ in multi-objective optimization for the vehicle routing problem[J]. Computer Engineering & Science, 2010, 32(10): 117-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJK201010031.htm
    [14]
    吴耕锐, 郭三学, 吴虎胜, 等. 改进多目标蚁群算法在动态路径优化中的应用[J]. 计算机应用与软件, 2019, 36(5): 249-254+288. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201905044.htm

    WU G R, GUO S X, WU H S, et al. Application of improved mutil-objective ant colony algorithm in dynamic path optimization[J]. Computer Applications and Software, 2019, 36(5): 249-254+288. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201905044.htm
    [15]
    李凤坤. 改进AHP-GA算法的多目标配送路径优化[J]. 计算机系统应用, 2019, 28(2): 152-157. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY201902023.htm

    LI F Q. Multi-objective location routing optimization of improved AHP-GA[J]. Computer Systems & Applications, 2019, 28(2): 152-157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY201902023.htm
    [16]
    WANG X Q, CHEN G, XU S. Bi-objective green supply chain network design under disruption risk through an extended NSGA-Ⅱ algorithm[J]. Cleaner Logistics and Supply Chain, 2022(3): 100025.
    [17]
    田旭杨, 陈泽君. 基于改进NSGA-Ⅱ的列车运行多目标优化方法[J]. 计算机应用, 2021, 41(增刊1): 153-161. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY2021S1027.htm

    TIAN X Y, CHEN Z J. Multi-objective optimization method of train operation based on improved NSGA-Ⅱ[J]. Journal of Computer Applications, 2021, 41(S1): 153-161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY2021S1027.htm
    [18]
    刘宝碇, 赵瑞清, 王纲. 不确定规划及应用[M]. 北京: 清华大学出版社, 2003.

    LIU B D, ZHAO R Q, WANG G. Uncertain programming with applications[M]. Beijing: Tsinghua University Press, 2003. (in Chinese)
    [19]
    YANG L X, LIU P, LI S, et al. Reduction methods of type-2uncertain variables and their applications to solid transportation problem[J]. Information Sciences, 2015(291): 204-237.
    [20]
    盛骤, 谢式千, 潘承毅, 等. 概率论与数理统计[M]. 北京: 高等教育出版社, 2001.

    SHENG Z, XIE S Q, PAN C Y, et al. Probability and mathematical statistics[M]. Beijing: Higher Education Press, 2001. (in Chinese)
    [21]
    黄麟. 第四方物流运输时间控制模型及算法研究[D]. 沈阳: 东北大学, 2017.

    HUANG L. Research on delivery time control model and algorithm of fourth party logistics[D]. Shenyang: Northeastern University, 2017. (in Chinese)
    [22]
    杨艳华, 洪亮. 考虑不确定运输时间的托盘调度模型研究[J]. 重庆理工大学学报(自然科学), 2020, 34(12): 271-274. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202012033.htm

    YANG Y H, HONG L. Pallet scheduling model with the uncertainty transportation time[J]. Journal of Chongqing University of Technology(Natural Science), 2020, 34(12): 271-274. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202012033.htm
    [23]
    DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(7)

    Article Metrics

    Article views (560) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return