Citation: | YIN Xing, ZHANG Yu, ZHENG Qianqian, TANG Kexin. A Study of Integrated Scheduling of Automated Container Terminal Based on DDQN[J]. Journal of Transport Information and Safety, 2022, 40(6): 81-91. doi: 10.3963/j.jssn.1674-4861.2022.06.009 |
[1] |
高雪峰. 基于深度强化学习的自动化集装箱码头双场桥动态调度研究[D]. 大连: 大连理工大学, 2020.
GAO X F. Research on dynamic scheduling of two YC in automated container terminal based on deep reinforcement learning[D]. Dalian: Dalian University of Technology, 2020. (in Chinese)
|
[2] |
丁一, 袁浩, 方怀瑾, 等. 考虑冲突规避的自动化集装箱码头AGV优化调度方法[J]. 交通信息与安全, 2022, 40(3): 96-107. doi: 10.3963/j.jssn.1674-4861.2022.03.010
DING Y, YUAN H, FANG H J, et al. An optimal scheduling method of AGVs at automated container terminal considering conflict avoidance[J]. Journal of Transport Information and Safety, 2022, 40(3): 96-107. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.03.010
|
[3] |
夏孟珏, 史学鑫, 李美贞. 集装箱码头岸桥突发故障情况下装卸船作业重调度研究[J]. 上海海事大学学报, 2022, 43(1): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHY202201005.htm
XIA M J, SHI X X, LI M Z, et al. Study on handling operation rescheduling under sudden malfunction of container terminal quay cranes[J]. Journal of Shanghai Maritime University, 2022, 43(1): 30-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHHY202201005.htm
|
[4] |
梁承姬, 杨全业. 双循环操作策略下集装箱码头岸桥与集卡多船作业联合调度[J]. 重庆交通大学学报(自然科学版), 2018, 37(3): 106-114. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201803019.htm
LIANG C J, YANG Q Y. Container terminal QC & IT integral scheduling model for multi-vessel operation under double-cycle strategy[J]. Journal of Chongqing Jiaotong University(Natural Science), 2018, 37(3): 106-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201803019.htm
|
[5] |
陈超, 邱建梅, 台伟力, 等. 出口箱随机入港下的集装箱码头泊位调度[J]. 交通信息与安全, 2014, 181(1): 91-96. doi: 10.3963/j.issn.1674-4861.2014.01.019
CHEN C, QIU J M, TAI W L, et al. Berth allocation planning in container terminals for the outbound containers arrival in random order[J]. Journal of Transport Information and Safety, 2014, 181(1): 91-96. (in Chinese) doi: 10.3963/j.issn.1674-4861.2014.01.019
|
[6] |
常祎妹, 朱晓宁. 不确定因素下的集装箱码头车船间装卸作业集成调度[J]. 交通运输工程学报, 2017, 17(6): 115-124. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201706017.htm
CHANG Y M, ZHU X N. Integrated scheduling of handling operation between train and vessel in container terminal under uncertain factor[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 115-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201706017.htm
|
[7] |
KIM K H, PARK Y M. A crane scheduling method for port container terminals[J]. European Journal of Operational Research, 2004, 156(3): 752-768.
|
[8] |
秦天保, 葛浩, 沙梅. 约束规划求解集装箱装卸系统集成调度问题[J]. 系统工程理论与实践, 2015, 35(8): 2127-2136. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201508023.htm
QIN T B, GE H, SHA M. Constraint programming for the integrated scheduling problem of container handling system in container terminals[J]. System Engineering-Theory & Practice, 2015, 35(8): 2127-2136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201508023.htm
|
[9] |
ZHEN L, YU S C, WANG S A, et al. Scheduling quay cranes and yard trucks for unloading operations in container ports[J]. Annals of Operations Research, 2019, 273(1): 455-478.
|
[10] |
钟祾充, 李文锋, 贺利军, 等. 集装箱码头混合零空闲柔性流水作业调度优化[J/OL]. 计算机集成制造系统: 1-22[2022-10-28].
ZHONG L C, LI W F, HE L J, et al. Optimization of mixed no-idle flexible flow scheduling in container terminal[J]. Computer Integrated Manufacturing Systems: 1-22[2022-10-28].
|
[11] |
陈超, 张哲, 曾庆成. 集装箱码头混合交叉作业集成调度模型[J]. 交通运输工程学报, 2012, 12(3): 92-100. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201203017.htm
CHEN C, ZHANG Z, ZENG Q C. Integrated scheduling model of mixed cross-operation for container terminal[J]. Journal of Traffic and Transportation Engineering, 2012, 12(3): 92-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201203017.htm
|
[12] |
杨彩云, 张煜, 徐亚军, 等. 自动化集装箱码头ART动态调速群智决策研究[J]. 武汉理工大学学报, 2022, 44(1): 28-35. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY202201005.htm
YANG C Y, ZHANG Y, XU Y J, et al. Simulation analysis of ART dynamic speed regulation of automated container terminal based on MAS[J]. Journal of Wuhan University of Technology, 2022, 44(1): 28-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY202201005.htm
|
[13] |
SUTTON R S, BARTO A G. Reinforcement learning: an introduction[J]. IEEE Transactions on Neural Networks, 1998, 9(5): 1054-1054.
|
[14] |
张华胜. 基于深度强化学习的自动化码头跨运车集成调度研究[D]. 上海: 上海海事大学, 2021.
ZHANG H S. Research on integrated scheduling of shuttle carriers in automated terminals based on deep reinforcement learning[D]. Shanghai: Shanghai Maritime University, 2021. (in Chinese)
|
[15] |
尚晶, 徐长生. 基于强化学习的集装箱码头卡车调度策略研究[J]. 武汉理工大学学报, 2011, 33(3): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201103015.htm
SHANG J, XU C S. Vehicle scheduling in container terminal based on reinforcement learning[J]. Journal of Wuhan University of Technology, 2011, 33(3): 72-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201103015.htm
|
[16] |
PARK S J, YOO Y H, PYO C W. Applying DQN solutions in fog-based vehicular networks: Scheduling, caching, and collision control[J]. Vehicular Communications, 2022, 33(C): 100397.
|
[17] |
SALVADORl M S. A solution to a special class of flow shop scheduling problems[J]. Symposium on the Theory of Scheduling and Its Applications, 1972(86): 83-91.
|
[18] |
SUTTON R S, BARTO A G. Reinforcement Learning: An Introduction[M]. second edition. 北京: 电子工业出版, 2019.
|
[19] |
陆志强, 任逸飞, 许则鑫. 基于深度学习的资源投入问题算法[J]. 计算机集成制造系统, 2021, 27(6): 1558-1568. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ202106003.htm
LU Z Q, REN Y F, XU Z X. Research on the deep learning algorithm for resource investment problem[J]. Computer Integrated Manufacturing Systems, 2021, 27(6): 1558-1568. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ202106003.htm
|
[20] |
HAN B A, YANG J J. Research on adaptive job shop scheduling problems based on dueling double DQN[J]. IEEE Access, 2020(8): 186474-186495.
|
[21] |
WANG Y H, ZHOU X, SHI Y X, et al. Transmission network expansion planning considering wind power and load uncertainties based on multi-agent DDQN[J]. Energies, 2021, 14(19): 6073.
|
[22] |
LIU C L, CHANG C C, TSENG C J. Actor-Critic deep reinforcement learning for solving job shop scheduling problem[J]. IEEE Access, 2020(8): 71752-71762.
|
[23] |
邢曦文. 基于混合流水作业组织的集装箱码头装卸集成调度优化[D]. 大连: 大连海事大学, 2013.
XING X W. Optimization of container loading/unloading integrated scheduling in a container terminal based on hybrid flowshop[D]. Dalian: Dalian Maritime University, 2013. (in Chinese)
|
[24] |
肖鹏飞, 张超勇, 孟磊磊, 等. 基于深度强化学习的非置换流水车间调度问题[J]. 计算机集成制造系统, 2021, 27(1): 192-205. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ202101018.htm
XIAO P F, ZHANG C Y, MENG L L, et al. Non-permutation flow shop scheduling problem based on deep reinforcement learning[J]. Computer Integrated Manufacturing Systems, 2021, 27(1): 192-205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ202101018.htm
|
[25] |
YUTTHAPONG T, WERASAK K. Comparing nonlinear inertia weights and constriction factors in particle swarm optimization[J]. International Journal of Knowledge-Based and Intelligent Engineering Systems, 2011, 15(2): 65-70.
|