Volume 39 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
MOU Zhenhua, LI Xiang, YAN Kangli, GUO Jijie. An Analysis of COVID-19 Propagation Model in Public Transportation Networks and Effectiveness of Epidemic Prevention Strategies[J]. Journal of Transport Information and Safety, 2021, 39(1): 111-117. doi: 10.3963/j.jssn.1674-4861.2021.01.0013
Citation: MOU Zhenhua, LI Xiang, YAN Kangli, GUO Jijie. An Analysis of COVID-19 Propagation Model in Public Transportation Networks and Effectiveness of Epidemic Prevention Strategies[J]. Journal of Transport Information and Safety, 2021, 39(1): 111-117. doi: 10.3963/j.jssn.1674-4861.2021.01.0013

An Analysis of COVID-19 Propagation Model in Public Transportation Networks and Effectiveness of Epidemic Prevention Strategies

doi: 10.3963/j.jssn.1674-4861.2021.01.0013
  • Received Date: 2020-09-05
  • Publish Date: 2021-02-28
  • Public transportation system is a critical potentiality space where airborne viruses have to spread between people. The study of the spread of viruses in the public transport system can accurately guide public transport epidemic prevention strategies. The two-layer public transportation network model, particle travel rules, and SEIR model are used to establish a public transportation network propagation model. Based on the background of virtual regional space and bus line network, characteristics of the two-layer network model are used to analyze the process of virus transmission on the bus and at the bus station. Both macro and micro epidemic prevention strategies are developed to analyze their effects. Public transportation causes the virus to spread on a large scale, and buses and bus stops are the most critical transmission links. For the public transportation epidemic prevention strategy, when the macro-control strategy cuts off the proportion of public transportation lines φ1 >0.5 or stops the proportion of public transportation stations φ2 >0.4, the final proportion of the immunized population will drop to below 0.3. The micro-adjustment strategy needs to control the departure interval td < 4 and the full load rate simultaneously α < 50%, so the final immune population ratio is less than 0.4, with the optimal prevention and control effect.

     

  • loading
  • [1]
    ZHANG Jinnong, ZHOU Luqian, YANG Yuqiong, et al. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics[J]. The Lancet Respiratory Medicine, 2020, 8 (3): 11-12. doi: 10.1016/S2213-2600(20)30071-0
    [2]
    XU Zhe, SHI Lei, WANG Yijin, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. The Lancet RespiratoryMedicine, 2020, 8(4): 420-422. doi: 10.1016/S2213-2600(20)30076-X
    [3]
    中国疾病预防控制中心. 新型冠状病毒肺炎流行病学特征分析[J]. 中华流行病学杂志, 2020, 41(2): 145-151. doi: 10.3760/cma.j.issn.0254-6450.2020.02.003

    Chinese Center for Disease Control and Prevention. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases(COVID-19)in China[J]. Chinese Journal of Epidemiology, 2020, 41(2): 145-151. (in Chinese) doi: 10.3760/cma.j.issn.0254-6450.2020.02.003
    [4]
    种鹏云, 尹惠. 交通运输传播新型冠状病毒肺炎的系统动力学仿真[J]. 交通运输工程学报, 2020, 20(3): 100-109. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202003013.htm

    ZHONG Pengyun, YIN Hui. System dynamics simulation on spread of COVID-19 by traffic and transportation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 100-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202003013.htm
    [5]
    雷斌, 刘星良, 曹振, 等. COVID-19在城市轨道交通系统内的传播建模与预测[J]. 交通运输工程学报, 2020, 20(3): 139-149. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202003017.htm

    LEI Bin, LIU Xingliang, CAO Zhen et al. Modeling and forecasting of COVID-19 spread in urban rail transit system[J]. Journal of Traffic and Transportation Engineering, 2020, 20 (3): 139-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202003017.htm
    [6]
    马昌喜, 王超, 郝威, 等. 突发公共卫生事件下应急定制公交线路优化[J]. 交通运输工程学报, 2020, 20(3): 89-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202003012.htm

    MA Changxi, WANG Chao, HAO Wei, et al. Emergency customized bus route optimization under public health emergencies[J]. Journal of Traffic and Transportation Engineering, 2020, 20(03): 89-99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202003012.htm
    [7]
    鲍君忠, 秦莹, 王西召, 等. 基于Logistic模型的大型邮轮疫情预测分析[J]. 交通信息与安全, 2020, 38(2): 136-142+148. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202002020.htm

    BAO Junzhong, QIN Ying, WANG Xizhao, et al. A prediction and analysis of epidemic outbreaks on large cruise ships based on a logistic model[J]. Journal of Transport Information and Safety, 2020, 38(2): 136-142+148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202002020.htm
    [8]
    刘文君, 何新华, 胡文发. 重大突发疫情对港口运营能力的影响研究[J]. 交通信息与安全, 2020, 38(2): 102-111+119. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202002016.htm

    LIU Wenjun, HE Xinhua, HU Wenfa. Impacts of major epidemic in public health emergencies on operational capacity of ports[J]. Journal of Transport Information and Safety. 2020, 38 (2): 102-111+119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202002016.htm
    [9]
    周继彪, 马昌喜, 董升, 张敏捷. 新冠肺炎疫情下城市公共交通非常规防疫策略: 以宁波市为例[J]. 中国公路学报, 2020, 33(11): 1-10.

    ZHOU Jibiao, MA Changxi, DONG Sheng, et al. Unconventional prevention strategies for urban public transport in the COVID-19 epidemic: taking ningbo city as a case study[J]. China Journal of Highway and Transport, 2020, 33(11): 1-10. (in Chinese)
    [10]
    RUAN Zhongyuan, TANG Ming, LIU Zonghua. How the contagion at links influences epidemic spreading[J]. The European Physical Journal B, 2013(86): 149. doi: 10.1140/epjb/e2013-30914-9
    [11]
    SONG Chaoming, QU Zehui, BLUMM N, et al. Limits of predictability in human mobility[J]. Science, 2010(327): 1018-1021. http://bjsm.bmj.com/lookup/ijlink?linkType=ABST&journalCode=sci&resid=327/5968/1018&atom=%2Fbjsports%2F45%2F16%2F1272.atom
    [12]
    TANG Ming, LIU Zong, LI Baowen. Epidemic spreading by objective traveling[J]. Europhys Lett, 2009(87): 18005.
    [13]
    阮中远. 复杂网络上的流行病传播[J]. 中国科学: 物理学、力学、天文学, 2020, 50(1): 98-117. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202001008.htm

    RUAN Zhongyuan. Epidemic spreading in complex networks[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2020, 50(1): 98-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202001008.htm
    [14]
    茹小磊, 杨超, 严钢, 等. 应对突发大规模流行病的城市常规公交管控策略[J]. 中国公路学报, 2020, 33(11): 11-19. doi: 10.3969/j.issn.1001-7372.2020.11.003

    RU Xiaolei, YANG Chao, YAN Gang, et al. Control strategy of urban public transit in response to large-scale emergent epidemic[J]. China Journal of Highway and Transport. 2020, 33 (11): 11-19. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.11.003
    [15]
    COLIZZA V, PASTOR-SATORRAS R, VESPIGNANI A. Reaction-diffusion processes and metapopulation models in heterogeneous networks[J]. Nat Phys, 2007(3): 276-282. http://www.nature.com/articles/nphys560?error=cookies_not_supported&code=02f2cdd7-a776-42b1-8821-a8925e9329aa
    [16]
    范如国, 王奕博, 罗明, 等. 基于SEIR的新冠肺炎传播模型及拐点预测分析[J]. 电子科技大学学报, 2020, 49(3): 369-374. https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202003009.htm

    FAN Ruguo, WANG Yibo, LUO Ming, et al. SEIR-Based COVID-19 transmission model and inflection point prediction analysis[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3): 369-374. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202003009.htm
    [17]
    张宇, 田万利, 吴忠广, 等. 基于改进SEIR模型的新冠肺炎疫情沿交通线路传播机制[J]. 交通运输工程学报, 2020, 20 (3): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202003018.htm

    ZHANG Yu, TIAN Wanli, WU Zhongguang, et al. Transmission mechanism of COVID-19 epidemic along traffic routes based on improved SEIR model[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 150-158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202003018.htm
    [18]
    SMALL M, TSK C K. Small world and scale free model of transmission of SARS[J]. Intertional Journal of Bifurcation and Chaos, 2005, 15(5): 1745-1755. doi: 10.1142/S0218127405012776
    [19]
    倪顺江. 基于复杂网络理论的病毒动力学建模与研究[D]. 北京: 清华大学, 2009.

    NI Shunjiang. Research on modeling of infectious disease spreading based on complex network theory[D]. Beijing: Tsinghua University, 2009. (in Chinese)
    [20]
    缪超. 具有多感染率网络中的传播动力学及节点免疫策略[D]. 南京: 南京邮电大学, 2018.

    MIU Chao. Epidemic dynamics and node immunization strategy in a network with multiple infection rates[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2018. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (612) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return