A Traffic Behavior Analysis of Food Delivery Workers Based on Knowledge Attitude Belief Practice Model
-
摘要: 为减少外卖配送员道路交通安全事故的发生,对传统知信行理论(knowledge, attitude/belief, practice,KAP)模型进行扩展,引入外卖配送员个体特征和劳动强度2个新变量,以1 610名外卖配送员的有效调查问卷为研究样本,通过对问卷量表进行Cronbach's α信度分析和KMO检验、Bartlett球形度检验效度分析,进行探索性因子分析后构建适用于外卖配送员群体的结构方程模型(structural equation modeling,SEM),并对构建的模型进行适配度检验和路径系数检验。结果表明:外卖配送员的个体认知和主观态度对交通行为产生直接影响,影响系数为0.284和0.209;且个体认知还可通过主观态度,间接影响个体交通行为。外卖配送员个体的劳动强度对交通行为产生直接的负向影响,影响系数为-0.390,具体而言,劳动强度越大,外卖配送员个体的交通安全行为风险越大。同时,通过研究发现,劳动强度已成为引发外卖配送员交通安全事故的重要诱因,而外卖配送员的个体特征、主观态度则是劳动强度的主要影响因素。由于外卖配送员的个体特征存在差异,其个体认知、主观态度、劳动强度及交通行为也会有所不同。而平台企业对不安全交通行为的处罚措施,可以起到规范外卖配送员交通行为的期待效果,进而减少交通违规次数和交通事故的发生。此外,外卖配送员自身的交通安全意识不仅会影响个体交通行为表现,还会对周边外卖配送员的交通安全认知造成负外部影响,进而导致“羊群效应”的产生。
-
关键词:
- 交通安全 /
- 外卖配送员 /
- 职业安全 /
- 知信行理论(KAP) /
- 负外部性
Abstract: In order to alleviate the occurrence of road traffic safety accidents in the process of food delivery, a structural equation model is constructed based on the extended theory of knowledge, attitude/belief, practice (KAP), and the effective questionnaires of 1 610 food delivery workers are taken as samples to quantize the influencing mechanism of factors such as individual characteristics, individual cognition, subjective attitude, labor intensity and traffic behavior of food delivery. A Cronbach's α coefficient reliability analysis is conducted on the questionnaire scale, and KMO test and Bartlett sphericity test are used to determine whether factor analysis can be performed. The exploratory factor analysis is carried out, and the principal factors are extracted by the method of feature root greater than 1. The maximum variance rotation method is used to make the factor variables more interpretable. The structural equation modeling (SEM) is used for studying the psychological attribution of traffic behavior, and the fit test and path coefficient test are carried out on the constructed model. The results show that the individual cognition and subjective attitude of food delivery workers directly influences the traffic behavior, The individual cognition and subjective attitude of the deliverymen directly affected their traffic behavior, and the influence coefficients are 0.284 and 0.209. Moreover, individual cognition can also indirectly affect their traffic behavior by affecting their subjective attitude. The labor intensity of individual distributors has a direct negative impact on traffic behavior and the influence coefficient is -0.390. Specifically, the greater the labor intensity, the greater the risk of traffic safety behavior of individual delivery workers. At the same time, the study found that labor intensity has become an important cause of traffic safety accidents of delivery workers, and the individual characteristics and subjective attitude of delivery workers are the main influencing factors of labor intensity. Due to the differences in individual characteristics of delivery workers, their individual cognition, subjective attitude, labor intensity and traffic behavior will also be different. The punishment measures for enterprises of unsafe traffic behaviors can play the expected effect of standardizing the traffic behaviors of delivery workers, thus reducing the number of traffic violations and the occurrence of traffic accidents. In addition, the traffic safety awareness of the delivery workers themselves will not only affect the individual traffic behavior performance, but also have a negative external impact on the traffic safety cognition of the surrounding delivery workers, which leads to the"herding effect".-
Key words:
- traffic safety /
- food delivery worker /
- occupational safety /
- KAP theory /
- negative externality
-
表 1 研究假设
Table 1. Research assumptions
序号 假设内容 假设1: H1a: 个体特征对个体认知有显著影响 H1b: 个体特征对主观态度有显著影响 H1c: 个体特征对劳动强度有显著影响 H1d: 个体特征对交通行为有显著影响 假设2: H2a: 个体认知对主观态度有正相关 H2b: 个体认知对交通行为有正相关 假设3: H3a: 主观态度对劳动强度有负相关 H3b: 主观态度对交通行为有正相关 假设4: H4:劳动强度对交通行为有负相关 表 2 测量成分
Table 2. Measurements
变量属性 测量项目 题项 年龄/岁 TZ1 个体特征 文化程度 TZ2 婚育状况 TZ3 每日工作时长/h QD1 劳动强度 每日送单量/单 QD2 每日配送公里数/km QD3 个体认知 我认为外卖平台企业关心配送员交通安全 RZ1 我认为外卖平台企业会对配送员进行安全培训 RZ2 我认为外卖配送同行安全意识普遍较高 RZ3 我会留意信号灯、标志标牌等交通安全信息 TD1 主观态度 安全教育培训对我很重要 TD2 同行的安全意识对我影响很大 TD3 外卖平台企业对不安全交通行为的处罚能够规范我的交通行为 TD4 交通行为 外卖配送骑行速度 XW1 外卖配送时经常发生交通事故 XW2 表 3 KMO和Bartlett检验
Table 3. KMO and Bartlett's test
KMO检验 Bartlett球形度检验 近似卡方 自由度 显著性 0.769 4 860.307 66.000 0.000*** 注:***为1%的显著性水平。 表 4 总方差解释
Table 4. Total variance analysis
成分 特征根 方差解释率/% 累积百分比/% 特征根 旋转后方差解释率/% 旋转后累积百分比/% 1 3.256 27.1 27.1 2.760 23.0 23.0 2 2.021 16.8 44.0 1.931 16.1 39.1 3 1.314 10.9 54.9 1.605 13.4 52.5 4 0.957 8.0 62.9 1.252 10.4 62.9 5 0.866 7.2 70.1 6 0.747 6.2 76.3 7 0.676 5.6 82.0 8 0.570 4.8 86.7 9 0.488 4.1 90.8 10 0.448 3.7 94.5 11 0.358 3.0 97.5 12 0.300 2.5 100.0 表 5 旋转后的因子载荷矩阵
Table 5. Rotated component matrix
问项 因子1 因子2 因子3 因子4 共同度 每日工作时长 0.002 0.816 0.048 -0.03 0.669 每日送单量 0.016 0.814 0.014 0.035 0.664 每日配送公里数 0.047 0.742 0.119 0.167 0.595 外卖平台企业对不安全交通行为的处罚能够规范我的交通行为 0.617 0.066 0.154 0.008 0.409 我会留意信号灯、标志标牌等交通安全信息 0.793 0.006 0.193 0.126 0.682 安全教育培训对我很重要 0.775 -0.04 0.243 0.134 0.679 同行的安全意识对我影响很大 0.783 0.046 0.038 0.038 0.618 我认为外卖平台企业会对配送员进行安全培训 0.154 0.016 0.844 0.105 0.747 我认为外卖平台企业关心配送员交通安全 0.422 0.111 0.733 0.106 0.738 我认为外卖配送同行安全意识普遍较高 0.565 0.037 0.431 0.061 0.51 外卖配送时经常发生交通事故 0.118 0.029 0.000 0.824 0.693 外卖配送骑行速度 0.032 -0.17 0.181 0.694 0.545 表 6 结构方程模型拟合指数
Table 6. Fitting index of the SEM
统计检验量 适配标准 结果 适配度判断 GFI > 0.9 0.957 √ AGFI > 0.9 0.936 √ CFI > 0.9 0.918 √ RMSEA < 0.08 0.060 √ 表 7 路径检验结果
Table 7. The result of the path test
路径关系 标准化路径系数 P值 假设结果 个体特征→个体认知 -0.059 0.043 成立 个体特征→主观态度 0.077 0.013 成立 个体特征→劳动强度 0.134 0.000 成立 个体特征→交通行为 0.108 0.022 成立 个体认知→主观态度 0.543 0.000 成立 个体认知→交通行为 0.284 0.000 成立 主观态度→劳动强度 -0.074 0.023 成立 主观态度→交通行为 0.209 0.000 成立 劳动强度→交通行为 -0.390 0.000 成立 -
[1] 孙小慧, 黄诚允. 外卖配送电动自行车换电柜选址定容实证研究[J]. 交通运输系统工程与信息, 2023(6): 1-14.SUN X H, HUNAG C Y. An empirical study on locating and sizing of take-out delivery electric bicycle battery swapping cabinets[J]. Journal of Transportation Systems Engineering and Information Technology, 2023(6)%: 1-14. (in Chinese) [2] 李珂, 韩同群, 杨正才, 等. 基于驾驶人心理风险场模型的个性化换道决策方法[J]. 交通信息与安全, 2023, 41(6): 32-41.LI K, HANG T Q, YANG Z C, et al. A personalized lane change decision method based on driver's psychological risk field model[J]. Journal of Transport Information and Safety, 2023, 41(6): 32-41. (in Chinese) [3] 王超, 顾永恒, 何也, 等. 机动车礼让行人心理归因建模分析研究[J]. 公路交通科技, 2023, 40(8): 185-191.WANG C, GU Y H, HE Y, et al. Analysis on modeling of vehicle drivers' comity pedestrians psychological attribution[J]. Journal of Highway and Transportation Research and Development, 2023, 40(8): 185-191. (in Chinese) [4] 郑玲, 乔旭强, 倪涛, 等. 基于多维信息特征分析的驾驶人认知负荷研究[J]. 中国公路学报, 2021, 34(4): 240-250. doi: 10.3969/j.issn.1001-7372.2021.04.021ZHENG L, QIAO X Q, NI T, et al. Driver cognitive loads based on multi-dimensional information feature analysis[J]. China Journal of Highway and Transport, 2021, 34(4): 240-250. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.04.021 [5] 郭凤香, 熊昌安, 万华森, 等. 风险情境下老年驾驶人行为特性研究[J]. 中国公路学报, 2021, 34(9): 309-321. doi: 10.3969/j.issn.1001-7372.2021.09.026GUO F X, XIONG C A, WAN H S, et al. Behavioral characteristics of older drivers based on risk perception[J]. China Journal of Highway and Transport, 2021, 34(9): 309-321. (in Chinese)% doi: 10.3969/j.issn.1001-7372.2021.09.026 [6] 张建斌, 周璐好, 王超. 基于交通违法行为的外卖分级配送政府补贴机制研究[J]. 重庆师范大学学报(自然科学版), 2021, 38(1): 69-75.ZHANG J B, ZHOU L H, WANG C. Research on the government subsidy mechanism for the graded delivery of food delivery based on traffic violations[J]. Journal of Chongqing 100Normal University (Natural Science Edition), 2021, 38 (1): 69-75. (in Chinese) [7] FAN J Q, YAO X X, ZHOU L H, et al. Food-delivery behavior under crowd sourcing mobility services[J]. Journal of Traffic and Transportation Engineering(English Edition), 2022, 9 (4): 676-691. doi: 10.1016/j.jtte.2022.07.001 [8] 郭昊颖, 熊浩, 任汭杨, 等. 允许取送交叉和中途接单的外卖配送路径优化[J]. 系统工程, 2022, 40(5): 70-81.GUO H Y, XIONG H, REN R Y, et al. The optimization of takeout delivery route that allows cross picking and delivery and order halfway[J]. Systems Engineering, 2022, 40(5): 70-81. (in Chinese) [9] 裴玉龙, 龙钰, 马丹. 交通安全意识对非机动车骑行者危险骑行行为的影响研究[J]. 交通信息与安全, 2024, 42(1): 49-58.PEI Y L, LONG Y, MA D, et al. Impacts of traffic safety awareness on risky riding behaviors among non-motorized cyclists[J]. Journal of Transport Information and Safety, 2024, 42(1): 49-58. (in Chinese) [10] 王雅坤, 卢昕玮, 陈巧丽, 等. 外卖配送公共交通违法行为影响因素分析[J]. 中国安全生产科学技术, 2019, 15 (12): 169-174.WANG Y K, LU X W, CHEN Q L, et al. Analysis on the influencing factors of illegal behaviors in public transport delivery[J]. Journal of Safety Science and Technology, 2019, 15 (12): 169-174. (in Chinese) [11] 王超, 周璐好, 任倩文. 基于感知失衡的外卖配送交通安全研究[J]. 中国安全生产科学技术, 2021, 17(8): 162-166.WANG C, ZHOU L H, REN Q W. Research on traffic safety of takeaway delivery based on perception imbalance[J]. Journal of Safety Science and Technology, 2021, 17(8): 162-166. (in Chinese) [12] BARANOWSKI T, CULLEN K W, NICKLAS T, et al. Are current health behavioral change models helpful inguiding prevention of weight gain efforts?[J]. Obesity Research, 2003 (11): 23-43. [13] 张琼, 付锐, 秦加合, 等. 基于知信行理论的驾驶人风险行为研究[J]. 中国安全科学学报, 2012, 22(4): 8-13.ZHANG Q, FU R, QIN J H, et al. Study on driver's risk behavior based on the theory of knowledge, trust and behavior[J]. Safety Psychology, 2012, 22(4): 8-13. (in Chinese) [14] LI S, ZHANG T, LIU N, et al. Drivers'attitudes, preference, and acceptance of in-vehicle anger intervention systems and their relationships to demographic and personality characteristics[J]. International Journal of Industrial Ergonomics, 2019, 75: 102899-102899. [15] 杨京帅, 王文亮, 苏薇, 等. 驾驶人危险感知建模与实验解析[J]. 东南大学学报(自然科学版), 2014, 44(6): 1304-1308.YANG J S, WANG W L, SU W, et al. Modeling and experimental analysis of driver's risk perception[J]. Journal of Southeast University(Natural Science Edition), 2014, 44 (6): 1304-1308. (in Chinese) [16] BACHANI A M, RISKO C B, GNIM C, et al. Knowledge, attitudes, and practices around drinking and driving in cambodia[J]. Public Health, 2017, 144: 32-38. [17] FRUHEN L S, ROSSEN L, GRIFFIN M A. The factors shaping car drivers'attitudes towards cyclist and their impact on behaviour[J]. Accident Analysis & Prevention, 2019, 123: 235-242. [18] BACHANI A M, HUANG Y W, MOGERE S, et al. Prevalence, knowledge, attitude and practice of speeding in two districts in Kenya: Thika and Naivasha[J]. Injury, 2013, 44: 24-30. [19] HOOPER D, COUGHLAN J, MULLEN M R. Structural equation modelling: guidelines for determining model fit[J]. Electronic Journal of Business Research Methods, 2008, 6 (1): 141-146. [20] 乔洁, 徐鑫, 刘传攀, 等. 驾驶人危险感知能力影响因素及干预方式综述[J]. 中国安全科学学报, 2022, 32(2): 34-41.QIAO J, XU X, LIU C P, et al. Review on affecting factors and intervention methods of drivers'hazard perception ability[J]. China Safety Science Journal, 2022, 32(2): 34-41. (in Chinese)