Determination of Healthy Cycling Speed Considering Individual PM2.5 Inhalation
-
摘要: 为降低空气污染时自行车骑行者的PM2.5吸入量,提升健康水平,其可采用减小行程暴露时间或呼吸速率2种方式。2种方式对骑行速度的要求相反,且PM2.5等污染物的吸入量因人而异,所以亟需建立考虑个体差异的PM2.5吸入量-骑行速度模型,以识别骑行者在PM2.5吸入量最小时的健康骑行速度。能量消耗模型以心率和个体特征指标为变量计算空气吸入量,并可结合PM2.5暴露质量浓度和骑行时间进而计算骑行者出行过程的PM2.5吸入量。根据个体骑行者的速度与心率的关联特征构建PM2.5吸入量-骑行速度模型,并通过求导方法获得健康骑行速度。对西安市173名被试试验结果的分析表明:健康骑行速度下男性、女性的PM2.5吸入量与最小和最大骑行速度下的PM2.5吸入量相比,降低比例分别为17.06%、8.57%和1.85%、2.50%。PM2.5吸入量和骑行速度之间呈“U”形曲线分布,“U”形曲线最低点对应于PM2.5吸入量最小时的健康骑行速度。男性健康骑行速度与年龄、体重和基础心率各变量间的相关关系均呈正相关,而女性健康骑行速度与年龄、体重和基础心率各变量间的相关关系分别呈正相关、负相关和正相关。健康骑行速度分布结果可为骑行者针对个体差异性特征提供参考,并建立污染天气下骑行者PM2.5吸入量减少的交通管控方法,提升居民在骑行过程中的健康水平。Abstract: Two approaches, including decreasing exposure time or respiratory rate, can reduce the inhalation of PM2.5 for cyclists during periods of air pollution. These two approaches have contrasting requirement for cycling speed, and the intake of PM2.5 and other pollutant varies from person to person. Therefore, it is an urgent need to develop a PM2.5 inhalation-cycling speed model considering individual differences to determine the optimal healthy cy-cling speed for a minimal PM2.5 inhalation for each cyclist. The energy consumption model calculates air inhalation based on heart rate and individual characteristics, which can be used to obtain the PM2.5 inhalation within single trip in combination with PM2.5 exposure concentration and cycling time. Then, the PM2.5 inhalation-cycling speed model is established based on the correlation between individual cyclists' speed and heart rate characteristics, which can be used to acquire the healthy cycling speed with the derivative methods. The results from 173 subjects in Xi'an indicate that the reduction in PM2.5 inhalation for males and females at their healthy cycling speed is 17.06%, 8.57%, 1.85%, and 2.50% compared to the minimum and maximum cycling speeds, respectively. The relationship between PM2.5 inhalation and cycling speed represents a "U" type curve, with the minimum point corresponding to the healthy cycling speed for minimal PM2.5 inhalation. The healthy cycling speed for males is positively correlated with age, weight, and basal heart rate, while females'healthy cycling speed correlates positively with age and basal heart rate but negatively with weight. The distribution of healthy cycling speeds can provide a reference for individual differences among cyclists, and establish traffic control methods to reduce PM2.5 inhalation of cyclists during polluted weather, and to improve their health during cyclist activities.
-
表 1 骑行速度与心率
Table 1. Cycling speed and heart rate
统计指标 男性 女性 骑行速度/(km/h) 心率/(beat/min) 骑行速度/(km/h) 心率/(beat/min) 均值 13.48 114.63 11.37 119.75 标准差均值 3.03 11.95 5.38 13.95 最大值 17.89 143.00 16.23 157.00 最小值 7.32 70.00 6.87 75.00 表 2 有/无机非分隔带的非机动车道PM2.5暴露水平
Table 2. PM2.5 exposure level of non-motorized lanes w/wo physical separation
单位: μg/m3 统计指标 支路 次干路 主干路 路段 交叉口 路段 交叉口 路段 交叉口 有机非分隔带 无机非分隔带 有机非分隔带 无机非分隔带 有机非分隔带 无机非分隔带 有机非分隔带 无机非分隔带 均值 77.18 81.32 78.21 86.17 82.79 87.57 88.39 93.32 97.14 99.19 标准差 18.98 20.72 19.20 19.98 22.03 21.81 20.56 18.63 21.77 24.10 最大值 119.00 126.00 116.00 119.00 125.00 132.00 134.00 133.00 138.00 134.00 最小值 43.00 42.00 42.00 51.00 42.00 47.00 51.00 60.00 59.00 50.00 -
[1] LI M R, HU M, DU B H, et al. Temporal and spatial distribution of PM2.5 chemical composition in a coastal city of Southeast China[J]. Science of the Total Environment, 2017, 605: 337-346. [2] 李洪枚, 伍鹏程, 伯鑫, 等. 临沂市区主要大气污染物的污染特征及其对居民健康的影响[J]. 环境科学学报, 2020, 40(8): 2919-2934. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202008026.htmLI H M, WU P C, BO X, et al. Pollution characterization of major air pollutants and their impacts on resident health in Linyi city[J]. Acta Scientiae Circumstantiae, 2020, 40(8): 2919-2934. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202008026.htm [3] ZHU C H, FU Z K, LIU L J, et al. Health risk assessment of PM2.5 on walking trips[J]. Scientific Reports, 2021, 11(1): 19249. doi: 10.1038/s41598-021-98844-6 [4] 朱才华, 张辛煜, 曾明哲, 等. 不同出行方式交通空间颗粒物质量浓度特征及人体摄入量估算方法研究[J]. 交通信息与安全, 2022, 40(2): 108-115. doi: 10.3963/j.jssn.1674-4861.2022.02.013ZHU C H, ZHANG X Y, ZENG M Z, et al. Assessment of level of concentration and intake quantity of particulate matter within the space of various travel modes[J]. Journal of Transport Information and Safety, 2022, 40(2): 108-115. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.02.013 [5] 刘小宇, 盛萍, 马晓凤, 等. 城市高密集人群区域机动车污染物时空分布及健康影响[J]. 交通信息与安全, 2018, 36(1): 119-128. doi: 10.3963/j.issn.1674-4861.2018.01.016LIU X Y, SHENG P, MA X F, et al. Temporal and spatial distribution and health risks of vehicle pollution in high-populated urban areas[J]. Journal of Transport Information and Safety, 2018, 36(1): 119-128. (in Chinese) doi: 10.3963/j.issn.1674-4861.2018.01.016 [6] SHI L, ZANOBETTI A, KLOOG I, et al. Low-concentration PM2.5 and mortality: estimating acute and chronic effects in a population-based study[J]. Environmental Health Perspectives, 2016, 124(1): 46-52. doi: 10.1289/ehp.1409111 [7] AMOATEY P, SICARD P, DE MARCO A, et al. Long-term exposure to ambient PM2.5 and impacts on health in Rome, Italy[J]. Clinical Epidemiology and Global Health, 2020, 8(2): 531-535. doi: 10.1016/j.cegh.2019.11.009 [8] ZHANG X, WANG Q, QIU T, et al. PM2.5 bound phthalates in four metropolitan cities of China: concentration, seasonal pattern and health risk via inhalation[J]. Science of the Total Environment, 2019, 696: 133982. doi: 10.1016/j.scitotenv.2019.133982 [9] GUO L, HU J, XING Y F, et al. Sources, environmental levels, and health risks of PM2.5-bound polycyclic aromatic hydrocarbons in energy-producing cities in northern China[J]. Environmental Pollution, 2021, 272: 116024. doi: 10.1016/j.envpol.2020.116024 [10] HUNG C S, HUANG C C, PAN S C, et al. Acute particulate matter exposure is associated with disturbances in heart rate complexity in patients with prior myocardial infarction[J]. Science of the Total Environment, 2020, 733: 138842. doi: 10.1016/j.scitotenv.2020.138842 [11] LARRIEU S, JUSOT J-F, BLANCHARD M, et al. Short term effects of air pollution on hospitalizations for cardiovas-cular diseases in eight French cities: the PSAS program[J]. Science of the Total Environment, 2007, 387(1): 105-112. [12] TIAN Y H, LIU H, WU Y Q, et al. Association between ambient fine particulate pollution and hospital admissions for cause specific cardiovascular disease: time series study in 184 major Chinese cities[J]. British Medical Journal, 2019, 367: l6572. [13] ZANG X W, QI X Q. Association between PM2.5 exposure and the prognosis of patients with acute myocardial infraction[J]. Archives of Medical Research, 2017, 48(3): 292-296. doi: 10.1016/j.arcmed.2017.06.006 [14] STRAK M, BOOGAARD H, MELIEFSTE K, et al. Respiratory health effects of ultrafine and fine particle exposure in cyclists[J]. Occupational and Environmental Medicine, 2010, 67(2): 118-124. doi: 10.1136/oem.2009.046847 [15] BOUFOUS S, HATFIELD J, GRZEBIETA R, et al. The impact of environmental factors on cycling speed on shared paths[J]. Accident Analysis & Prevention, 2018, 110: 171-176. [16] ERIKSSON J, FORSMAN Å, NISKA A, et al. An analysis of cyclists'speed at combined pedestrian and cycle paths[J]. Traffic Injury Prevention, 2019, 20(S3): 56-61 [17] KEYTEL L R, GOEDECKE J H, NOAKES T D, et al. Prediction of energy expenditure from heart rate monitoring during submaximal exercise[J]. Journal of Sports Sciences, 2005, 23(3): 289-297. doi: 10.1080/02640410470001730089 [18] 马国强, 邱俊, 陆姣姣, 等. 应用加速度计数建立场地自行车能耗预测方程[J]. 中国运动医学杂志, 2015, 34(7): 621-627. https://www.cnki.com.cn/Article/CJFDTOTAL-YDYX201507001.htmMA G Q, QIU J, LU J J, et al. Development of prediction equation for estimation of energy expenditure in track cycling using the technique of accelerometry counts[J]. Chinese Journal of Sports Medicine, 2015, 34(7): 621-627. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YDYX201507001.htm [19] 刘永红, 钟慧, 陈进财, 等. 广州高峰期典型公交车站候车人群颗粒物暴露特征分析[J]. 安全与环境学报, 2021, 21 (3): 1324-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202103056.htmLIU Y H, ZHONG H, CHEN J C, et al. Particulate matter exposure of waiting passenger during rush hour at typical bus stops in Guangzhou[J]. Journal of Safety and Environment, 2021, 21(3): 1324-1332. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202103056.htm [20] YAMAMOTO A, NAKAMOTO H, BESSHO Y, et al. Monitoring respiratory rates with a wearable system using a stretchable strain sensor during moderate exercise[J]. Medical & Biological Engineering & Computing, 2019, 57: 2741-2756.