Comprehensive Study on Route Flight Separation and Control Frequency of Urban UAV
-
摘要: 聚焦城市无人机航线飞行,为确保运行安全,需要为无人机配备合适的飞行间隔。面向同航线纵向飞行场景,研究了考虑冲突频率与碰撞概率且符合ICAO间隔制定原则的间隔调控模型。通过研究仅考虑无人机定位误差下的碰撞风险,得到无人机纵向飞行间隔,作为后续间隔计算的基准;通过综合考虑定位误差和速度误差引发的位置不确定性,计算伴随无人机航线飞行进程的碰撞风险。加大纵向间隔会延迟突破安全目标水平的时机,但随着飞行进程的推进,碰撞风险终将突破安全目标水平。基于此,提出了无人机位置调控机制,对2架无人机位置进行定期调控,以消除速度所产生的累积误差。针对某1个指定的安全目标水平,得到了纵向间隔与位置调控频率的关系曲线,发现二者存在博弈关系,实施高频调控,需要采取更小的航线间隔;反之,则需要加大航线间隔。同时,为兼顾城市空间与位置调控能力的双重约束,提出了选取曲率最大值位置的所需飞行间隔与调控频率作为折中方案,发现安全目标水平要求越严格,所需调控频率和飞行间隔越大。实验得到在满足安全目标水平为5×10-9次/飞行小时情况下,所需调控频率为87次/h,所需纵向飞行间隔为90 m;同时在实际运行环境中,应用上述评估模型与方法可以客观选择所需间隔和调控频率。本文研究可以兼顾城市物流无人机空中运行的安全,提高城市空域利用率和派送效率。Abstract: Focusing on urban UAVs route flight, in order to ensure the safety of operation, it is necessary to equip the UAVs with appropriate separation. For the longitudinal flight scenario of the same route, a separation regulation model that considers the conflict frequency and collision probability and complies with the ICAO separation principle is investigated. By considering only the collision risk of UAVs positioning error, the longitudinal separation is obtained, which is used as the benchmark for the subsequent separation calculation. By considering the position uncertainty caused by both positioning error and velocity error, the collision risk along with the flight progress of UAVs is calculated. Increasing the longitudinal separation will delay the time to break through the target level of safety, but as the flight progresses, the collision risk will eventually overstep the target level of safety. Based on this finding, the method of UAV position regulation mechanism is proposed, and the distance between two aircraft is calibrated periodically. For a given target level of safety, a curve of longitudinal separation and position control frequency can be obtained, and a game relationship is found to exist between them. Implementation of high-frequency control, a smaller route separation is needed. Otherwise, the required route separation should be increased. In order to take into account, the double constraints of urban airspace and position control ability, a compromise scheme to select the separation and the control frequency at the maximum curvature is presented. It is found that the more stringent the safety target level requirements, the greater the required frequency of regulation and flight separation. The experimental analysis finds that when the target level of safety is 5×10-9 times/flight hour, the required control frequency is 87 times/hour and the required longitudinal separation is 90 m. At the same time, in the actual operating environment, the application of the above evaluation models and methods can objectively select the required separation and regulation frequency. The research in this paper can consider the safety of urban logistics UAV air operation and improve urban airspace utilization and delivery efficiency.
-
表 1 无人机航迹数据格式
Table 1. UAV track data format
参数 取值 参数 取值 纬度/(°) 25.846 北向速度/(m/s) -0.019 经度/(°) 114.919 东向速度/(m/s) -0.031 高度/m 108.802 地向速度/(m/s) 0.006 表 2 无人机机型参数表
Table 2. UAV model parameters table
参数 取值 参数 取值 参数 取值 最大起飞重量/kg 37 纵向定位误差期望 0 纵向定位误差方差 1.741 2 最大载荷/kg 12 侧向定位期望 0 侧向定位误差方差 1.575 3 巡航速度/(m/s) 14 高度定位期望 0 高度定位误差方差 1.389 5 几何尺寸/(m×m×m) 2.5×2.5×0.6 速度误差期望 0 速度误差方差 0.072 3 -
[1] ICAO. Global air traffic management operational concept: DOC9854[S]. Montreal: ICAO, 2005. [2] REICH P G. Analysis of long-range air traffic systems: separation standards — Ⅰ[J]. Journal of Navigation, 1997, 50(3): 436-447. doi: 10.1017/S0373463300019068 [3] BROOKER P. Lateral collision risk in air traffic track systems: a'Post-Reich'event model[J]. Journal of Navigation, 2003, 56(3): 399-409. doi: 10.1017/S0373463303002455 [4] BROOKER P. Longitudinal collision risk for ATC track systems: a hazardous event model[J]. Journal of Navigation, 2006, 59(1): 55-70. doi: 10.1017/S0373463305003516 [5] ICAO. RGCSP working group meeting: summary of discussions and conclusions[S]. Montreal: ICAO, 1995. [6] ICAO. Manual on airspace planning methodology for the determination of separation minima: DOC9689[S]. Montreal: ICAO, 1998. [7] ICAO. Manual on a 300 m(1 000 ft) vertical separation minimum between FL 290 and FL 410 inclusive: DOC9574[S]. Montreal: ICAO, 1998. [8] MAY G T. A method for predicting the number of near mid-air collisions in a defined airspace[J]. Journal of Navigation, 1971, 24(2), 204-218. doi: 10.1017/S0373463300018683 [9] ENDOH S. Aircraft collision models[D]. Cambridge: Massachusetts Institute of Technology, 1982. [10] WEIBELRE, HANSMAN R J. Safety considerationsfor operation of unmanned aerial vehicles in the national airspace systems[D]. Cambridge: MassachusettsInstituteofTechnology, 2006. [11] COURHARBO A, SCHIOLER H. Probability of low-altitude midair collision between general aviation and unmanned aircraft[J]. Risk Analysis, 2019, 39(11): 2499-2513. doi: 10.1111/risa.13368 [12] BROOKER P. Air traffic management accident risk. Part 1: The limits of realistic modelling[J]. Safety Science, 2006, 44(5): 419-450. doi: 10.1016/j.ssci.2005.11.004 [13] PEREZ J A, GOMEZ C F, RODRIGUEZ A, et al. RPAS conflict-risk assessment in non-segregated airspace[J]. Safety Science, 2019, 111: 7-16. doi: 10.1016/j.ssci.2018.08.018 [14] NETJASOV F. Framework for airspace planning and design based on conflict risk assessment: Part 1: Conflict risk assessment model for airspace strategic planning[J]. Transportation Research Part C: Emerging Technologies, 2012, 24: 190-212. doi: 10.1016/j.trc.2012.03.002 [15] NETJASOV F. Framework for airspace planning and design based on conflict risk assessment: Part 2: Conflict risk assessment model for airspace tactical planning[J]. Transportation Research Part C: Emerging Technologies, 2012, 24: 213-226. doi: 10.1016/j.trc.2012.03.003 [16] NETJASOV F, BABIC O. Framework for airspace planning and design based on conflict risk assessment: Part 3: Conflict risk assessment model for airspace operational and current day planning[J]. Transportation Research Part C: Emerging Technologies, 2013, 32: 21-47. doi: 10.1016/j.trc.2013.03.009 [17] KALLINEN V, MCFADYEN A. Collision risk modeling and analysis for lateral separation to support unmanned traffic management[J]. Risk Analysis, 2022, 42(4): 854-881. doi: 10.1111/risa.13809 [18] MCFADYENA, MARTINT, PEREZT. Low-level collisionrisk modelling for unmanned aircraft integration and management[C]. IEEE Aerospace Conference, Montana, USA: IEEE, 2018. [19] 李亚飞, 刘明欢, 王莉莉. 建筑物影响下的无人机城区运行风险评估[J]. 中国安全科学学报, 2022, 32(7): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202207020.htmLI Y F, LIU M H, WANG L L. Risk assessment of urban UAV operation under influence of buildings[J]. China Safety Science Journal, 2022, 32(7): 136-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202207020.htm [20] 任新惠, 程彩霞. 城市运行无人机第三方风险模型构建及应用[J]. 中国安全科学学报, 2021, 31(9): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202109004.htmREN X H, CHENG C X. Construction and application of third-party risk model for unmanned aerial vehicle operation in urban environment[J]. China Safety Science Journal, 2021, 31(9): 15-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202109004.htm [21] 姚登凯, 马嘉呈, 赵顾颢. 军民航空域安全评估中的碰撞风险研究[J]. 安全与环境学报, 2017, 17(5): 1637-1641. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201705003.htmYAO D K, MA J C, ZHAO G H. Safety assessment for the collision risk between the civilian and military airplanes[J]. Journal of Safety and Environment, 2017, 17(5): 1637-1641. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201705003.htm [22] 李琦, 甘旭升, 孙静娟, 等. 军航无人机与民航航班侧向碰撞风险评估[J]. 北京航空航天大学学报, 2021, 4(47): 724-730. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202104007.htmLI Q, GAN X S, SUN J J, et al. Risk assessment of lateral collision between military UAV and civil aviation flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 4(47): 724-730. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202104007.htm [23] 王莉莉, 阳杰. 基于位置误差概率模型的物流无人机安全间隔评估方法研究[J]. 中国安全生产科学技术, 2022, 18(3): 184-192 https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK202203028.htmWANG L L, YANG J. Research on assessment method of safety separation for logistics UAVs based on position error probability model[J]. Journal of Safety Science and Technology, 2022, 18(3): 184-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK202203028.htm