[1] |
熊璐, 杨兴, 卓桂荣, 等. 无人驾驶车辆的运动控制发展现状综述[J]. 机械工程学报, 2020, 56: 127-143. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202010017.htmXIONG L, YANG X, ZHUO G R, et al. Overview of the development status of motion control for autonomous vehicles[J]. Journal of Mechanical Engineering, 2020, 56: 127-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202010017.htm
|
[2] |
陈慧岩, 陈舒平, 龚建伟. 智能汽车横向控制方法研究综述[J]. 兵工学报, 2017, 38: 1203-1214. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201706021.htmCHEN H Y, CHEN S P, GONG J W. Overview of horizontal control methods for intelligent vehicles[J]. Acta Ordnance Engineering, 2017, 38: 1203-1214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201706021.htm
|
[3] |
潘洺铭, 孙宇波, 刘强. 智能汽车对无信号交叉口行人的避撞控制[J]. 交通信息与安全, 2021, 39(2): 19-27. doi: 10.3963/j.jssn.1674-4861.2021.02.003PAN M M, SUN Y B, LIU Q. Collision avoidance control by intelligent vehicle for pedestrians at unsignaled intersection[J]. Journal of Transport Information and Safety, 2021, 39 (2): 19-27. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.02.003
|
[4] |
段敏, 孙小松, 张博涵. 基于模型预测控制与离散线性二次型调节器的智能车横纵解耦跟踪控制[J]. 汽车技术, 2022, (8): 38-46. https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS202208005.htmDUAN M, SUN X S, ZHANG B H. Horizontal and longitudinal decoupling tracking control of intelligent vehicle based on model predictive control and discrete linear quadratic regulator[J]. Automotive Technology, 2022, 563(8): 38-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS202208005.htm
|
[5] |
高琳琳, 唐风敏, 郭蓬, 等. 自动驾驶横向运动控制的改进LQR方法研究[J]. 机械科学与技术, 2021, 40: 435-441. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202103018.htmGAO L L, TANG F M, GUO P, et al. Research on improved LQR method for lateral motion control of automatic driving[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40: 435-441. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202103018.htm
|
[6] |
BROWN M, FUNKE J, ERLIEN S, et al. Safe driving envelopes for path tracking in autonomous vehicles[J]. Control Engineering Practice, 2017, 61: 307-316. doi: 10.1016/j.conengprac.2016.04.013
|
[7] |
石贞洪, 江洪, 于文浩, 等. 适用于路径跟踪控制的自适应MPC算法研究[J]. 计算机工程与应用, 2020, 56: 266-271. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202021041.htmSHI Z H, JIANG H, YU W H, et al. Research on adaptive MPC algorithm for path tracking control[J]. Computer Engineering and Applications, 2020, 56: 266-271. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202021041.htm
|
[8] |
SONG X, SHAO Y, QU Z. A vehicle trajectory tracking method with a time-varying model based on the model predictive control[J]. IEEE Access, 2019(8): 16573-16583.
|
[9] |
TAHERIAN S, HALDER K, DIXIT S, et al. Autonomous collision avoidance using MPC with LQR-based weight transformation[J]. Sensors, 2021, 21(13): 4296. doi: 10.3390/s21134296
|
[10] |
CHANG X, ZHANG H, YAN S, et al. Analysis and roll prevention control for distributed drive electric vehicles[J]. World Electric Vehicle Journal, 2022, 13(11): 210. doi: 10.3390/wevj13110210
|
[11] |
HUANG W, YANG X, ZHU S. Torque vectoring controller of distributed-drive electric vehicle for acceleration slip regulation and lateral stability enhancement: design and test[R]. Shanghai: SAE Technical Paper, 2020.
|
[12] |
LIANG X, WANG Q, CHEN W, et al. Coordinated control of distributed drive electric vehicle by TVC and ESC based on function allocation[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2022, 236(4): 606-620. doi: 10.1177/09544070211026185
|
[13] |
YU Z, LENG B, XIONG L, et al. Direct yaw moment control for distributed drive electric vehicle handling performance improvement[J]. Chinese Journal of Mechanical Engineering, 2016, 29(3): 486-497. doi: 10.3901/CJME.2016.0314.031
|
[14] |
HAI D, XIE X, JIN L. Study on the stability control strategy for distributed driving electric vehicle[C]. 9th International Conference on Green Intelligent Transportation Systems and Safety, Green, Singapore: Springer, 2020: 757-766.
|
[15] |
LU Y, LI J, JIANG W, et al. Research on handling stability control strategy of distributed drive electric vehicle[C]. 2022 6th CAA International Conference on Vehicular Control and Intelligence(CVCI), Beijing: IEEE, 2022.
|
[16] |
张雷, 赵宪华, 王震坡. 四轮轮毂电机独立驱动电动汽车轨迹跟踪与横摆稳定性协调控制研究[J]. 汽车工程, 2020, 42(11): 1513-1521. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202011009.htmZHANG L, ZHAO X H, WANG Z P. Research on coordinated control of trajectory tracking and yaw stability of electric vehicle driven by four-wheel hub motor[J]. Automotive Engineering, 2020, 42(11): 1513-1521. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202011009.htm
|
[17] |
陈特, 陈龙, 徐兴, 等. 分布式驱动无人车路径跟踪与稳定性协调控制[J]. 汽车工程, 2019, 41: 1109-1116. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201910001.htmCHEN T, CHEN L, XU X, et al. Path tracking and stability coordination control of distributed drive unmanned vehicle[J]. Automotive Engineering, 2019, 41: 1109-1116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201910001.htm
|
[18] |
RAJAMANI R. Vehicle dynamics and control[M]. Cham, Switzerland: Springer Science & Business Media, 2011.
|
[19] |
DAVILA J, FRIDMAN L, LEVANT A. Second-order sliding-mode observer for mechanical systems[J]. IEEE Transactions on Automatic Control, 2005, 50(11): 1785-1789. doi: 10.1109/TAC.2005.858636
|
[20] |
刘陆, 丁世宏, 李世华. 高阶滑模控制理论综述[J]. 控制理论及应用, 2022, 39(12): 2193-2201. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY202212001.htmLIU L, DING S H, LI S H. Review of high order sliding mode control theory[J]. Control Theory & Applications, 2022, 39(12): 2193-2201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY202212001.htm
|
[21] |
连晋毅, 王坤, 任艳强. 分布驱动式纯电动汽车直接横摆力矩控制研究[J]. 机械设计与制造, 2023, (11): 149-155. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ202311029.htmLIAN J Y, WANG K, REN Y Q. Research on direct yaw torque control of distributed drive pure electric vehicle[J]. Machinery Design & Manufacture, 2023, (11): 149-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ202311029.htm
|