留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能船舶安全研究的热点问题分析与展望

张笛 李治宏 万程鹏

张笛, 李治宏, 万程鹏. 智能船舶安全研究的热点问题分析与展望[J]. 交通信息与安全, 2023, 41(6): 1-11. doi: 10.3963/j.jssn.1674-4861.2023.06.001
引用本文: 张笛, 李治宏, 万程鹏. 智能船舶安全研究的热点问题分析与展望[J]. 交通信息与安全, 2023, 41(6): 1-11. doi: 10.3963/j.jssn.1674-4861.2023.06.001
ZHANG Di, LI Zhihong, WAN Chengpeng. An Analysis and Prospects of Hot Topics on Maritime Autonomous Surface Ship Safety Research[J]. Journal of Transport Information and Safety, 2023, 41(6): 1-11. doi: 10.3963/j.jssn.1674-4861.2023.06.001
Citation: ZHANG Di, LI Zhihong, WAN Chengpeng. An Analysis and Prospects of Hot Topics on Maritime Autonomous Surface Ship Safety Research[J]. Journal of Transport Information and Safety, 2023, 41(6): 1-11. doi: 10.3963/j.jssn.1674-4861.2023.06.001

智能船舶安全研究的热点问题分析与展望

doi: 10.3963/j.jssn.1674-4861.2023.06.001
基金项目: 

国家自然科学基金项目 51920105014

国家自然科学基金项目 52372342

详细信息
    作者简介:

    张笛(1983—)博士,研究员. 研究方向:水路运输风险管理. E-mail:zhangdi@whut.edu.cn

    通讯作者:

    万程鹏(1990—)博士,副研究员. 研究方向:水上交通运输风险评价. E-mail:cpwan@whut.edu.cn

  • 中图分类号: U491.5+4

An Analysis and Prospects of Hot Topics on Maritime Autonomous Surface Ship Safety Research

  • 摘要: 近年来,随着自主导航、传感器、通信和网络技术的成熟,智能船舶的研究迅速发展。2023年9月,第33届欧洲安全与可靠性会议在英国南安普顿成功召开。会议主题聚焦于在互联世界中构建安全的未来,特别关注智能船舶安全性。在对514篇会议论文(其中19篇涉及智能船舶安全相关主题)进行全面分析的基础上,结合前2届会议情况,以及国内外近十年的相关研究,总结了智能船舶安全研究领域的4个热点问题:①自主性水平与相关法律法规:随着船舶自主性的提升,现有法律体系需要更新以适应新技术,研究集中在界定智能船舶的自主性水平,并探讨相应的法律和监管框架;②远程操作中的人因问题:远程操作引入了新的挑战,研究聚焦于设计远程操作系统,以减轻操作员的心理负担,提高沟通效率,并提供有效的决策支持以确保安全;③智能船舶风险评估:该研究领域致力于使用先进技术进行更精准的安全和风险评估,包括运用多维传感器数据、实时监控和多样化的数据分析模型;④人工智能与机器学习的应用:二者被视为智能船舶安全领域的创新方向,研究重点在于利用这些技术进行故障预测、航行路径优化和自动化安全监督。通过分析现有文献,从4个关键角度对未来智能船舶安全研究方向进行了展望:①通过采用基于模型的系统工程方法进行船舶安全分析,可以从设计初期开始识别并消除潜在的安全隐患,同时促进跨学科团队的协作,以提高安全与可靠性分析的精确性;②人因风险分析方面,认为功能共振分析方法更适合处理智能船舶这类复杂系统,通过评估系统功能之间的相互作用,识别故障并制定预防措施;③为了提高紧急情况下的干预效率,需要研究开发能辅助操作员迅速、准确作出决策的支持系统,同时须考虑到操作员的心理和生理状况;④应用人工智能和机器学习深化理论,开发能在复杂海洋环境中作出精确决策的自主决策模型,以及能整合多种数据源提供精确天气预报和航线优化的先进算法。

     

  • 图  1  主要成果来源国家

    Figure  1.  Main source countries

    图  2  2015—2023年发文量

    Figure  2.  Yearly publication from 2015-2023

    图  3  研究主题聚类

    Figure  3.  Research topic clusters

    图  4  各研究主题占比

    Figure  4.  The distribution of research topics

    图  5  Bow-tie分析方法

    Figure  5.  Bow-tie analysis method

    图  6  用于量化训练后的PHM模型精度验证的框架

    Figure  6.  Framework for quantifying the validation accuracy of the trained PHM model

    图  7  人类和机器学习循环过程

    Figure  7.  Human and robot task learning cycle

    表  1  智能船舶自主性水平

    Table  1.   Level of autonomy of MASS

    自主性水平 描述
    等级1 具有自动化流程和决策支持的船舶,海员在船操作控制船舶系统和功能
    等级2 有海员在船的遥控船舶
    等级3 没有海员在船的遥控船舶
    等级4 完全自主的船舶
    下载: 导出CSV
  • [1] UTNE I B. Risk-aware autonomous systems for safe and intelligent decision making[C]. The 33th European Safety and Reliability Conference(ESREL2023), Southampton, UK: ESRA, 2023.
    [2] WANG J. Effects of offshore safety case regulations on vessel/platform collision incidents[C]. The 33th European Safety and Reliability Conference (ESREL2023), Southampton, UK: ESRA, 2023.
    [3] BARROS A. Resilience analysis and optimization for interconnected or distributed systems: use cases and methodological contributions from the chair RRSC[C]. The 33th European Safety and Reliability Conference(ESREL2023), Southampton, UK: ESRA, 2023.
    [4] PORTER S. Early and effective safety/cybersecurity analysis-getting started with STPA[C]. The 33th European Safety and Reliability Conference (ESREL2023), Southampton, UK: ESRA, 2023.
    [5] LERVOLONO L. Seismic risk and resilience of civil infrastructure: towards the reconciliation of time and space[C]. The 33th European Safety and Reliability Conference (ESREL2023), Southampton, UK: ESRA, 2023.
    [6] PAULOS T. Launch vehicle and spacecraft risk analysis applications[C]. The 33th European Safety and Reliability Conference(ESREL2023), Southampton, UK: ESRA, 2023.
    [7] VINNEM J. E. Reviewing 50 years' experience in Norwegian risk governance[C]. The 33th European Safety and Reliability Conference(ESREL2023), Southampton, UK: ESRA, 2023.
    [8] 严新平. 智能船舶的研究现状与发展趋势[J]. 交通与港航, 2016, 3(1): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-CSGS201601008.htm

    YAN X P. Research status and development trends of intelligent ships[J]. Transportation and Port Navigation, 2016, 3(1): 25-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSGS201601008.htm
    [9] 苏士斌, 刘英策, 林洪山, 等. 无人驾驶运输船发展现状与关键技术[J]. 船海工程, 2018, 47(5): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-WHZC201805013.htm

    SU S B, LIU Y C, LIN H S, et al. Development and key technologies of unmanned transport ship[J]. Ship & Ocean Engineering, 2018, 47(5): 56-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHZC201805013.htm
    [10] 张笛, 赵银祥, 崔一帆, 等. 智能船舶的研究现状可视化分析与发展趋势[J]. 交通信息与安全, 2021, 39(1): 7-16, 34. doi: 10.3963/j.jssn.1674-4861.2021.01.002

    ZHANG D, ZHAO Y X, CUI Y F, et al. A visualization analysis and development trend of intelligent ship studies[J]. Journal of Transport Information and Safety, 2021, 39(1): 7-16, 34. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.01.002
    [11] 严新平, 褚端峰, 刘佳仑, 等. 智能交通发展的现状、挑战与展望[J]. 交通运输研究, 2021, 7(6): 2-10, 22. https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH202106001.htm

    YAN X P, CHU D F, LIU J L, et al. Current status, challenges, and prospects of intelligent transportation development[J]. Transportation Research, 2021, 7(6): 2-10, 22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH202106001.htm
    [12] WRIGHT R G. Unmanned and autonomous ships: An overview of MASS[M]. London: Routledge, 2020.
    [13] 严新平, 刘佳仑, 范爱龙, 等. 智能船舶技术发展与趋势简述[J]. 船舶工程, 2020, 42(3): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202003008.htm

    YAN X P, LIU J L, FANA L, et al. A brief overview of the development and trends in intelligent ship technology[J]. Ship Engineering, 2020, 42(3): 15-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202003008.htm
    [14] LI Z H, ZHANG D, HAN B, et al. Risk and reliability analysis for maritime autonomous surface ship: A bibliometric review of literature from 2015 to 2022[J]. Accident Analysis & Prevention, 2023, 187: 107090.
    [15] DANIEL L, ADACHI T, LEE S. Shipbuilding market developments, first semester 2022: Monitoring developments in ship supply, demand, prices and costs[R/OL]. (2022-07)[2023-11-27]. https://www.oecd.org/publications/shipbuilding-market-developments-first-semester-2022-e511558d-en.htm
    [16] WRÓBEL K, MONTEWKA J, KUJALA P. Towards the development of a system-theoretic model for safety assessment of autonomous merchant vessels[J]. Reliability Engineering & System Safety, 2018, 178: 209-224.
    [17] WRÓBEL K, MONTEWKA J, KUJALA P. System-theoretic approach to safety of remotely-controlled merchant vessel[J]. Ocean Engineering, 2018, 152: 334-345. doi: 10.1016/j.oceaneng.2018.01.020
    [18] BANDA O A V, KANNOS S, GOERLANDT F, et al. Systemic hazard analysis and management process for the concept design phase of an autonomous vessel[J]. Reliability Engineering & System Safety, 2019, 191: 106584.
    [19] RØDSETH Ø J, BURMEISTER H C. Risk assessment for an unmanned merchant ship[J]. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 2015, 9(3): 357-364. doi: 10.12716/1001.09.03.08
    [20] TAM K, JONES K. Cyber-risk assessment for autonomous ships[C]. 2018 International Conference on Cyber Security and Protection of Digital Services(Cyber Security), Scotland, UK: IEEE, 2018.
    [21] KARDAKOVA M, SHIPUNOV I, NYRKOV A, et al. Cyber security on sea transport[C]. International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT, Voronezh and Samara, Russia: Springer, 2018.
    [22] CUZMAN N H C, ZHANG J, XIE J, et al. A comparative study of STPA-extension and the UFoI-E method for safety and security co-analysis[J]. Reliability Engineering & System Safety, 2021, 211: 107633.
    [23] PERERA L P, GUEDES S C. Collision risk detection and quantification in ship navigation with integrated bridge sys-tems[J]. Ocean Engineering, 2015, 109, 344-354. doi: 10.1016/j.oceaneng.2015.08.016
    [24] CHEN C, MA F, XU X, et al. A novel ship collision avoid-ance awareness approach for cooperating ships using multi-agent deep reinforcement learning[J]. Journal of Marine Science and Engineering, 2021, 9(10): 1056. doi: 10.3390/jmse9101056
    [25] ZHAO L, FU X. A novel index for real-time ship collision risk assessment based on velocity obstacle considering dimension data from AIS[J]. Ocean Engineering, 2021, 240: 109913. doi: 10.1016/j.oceaneng.2021.109913
    [26] IMO. Outcome of the regulatory scoping exercise for the use of maritime autonomous surface ships (MASS)[R/OL]. (2021-06)[2024-01-03]. https://wwwcdn.imo.org/localre-sources/en/MediaCentre/PressBriefings/Documents/MSC.1Circ. 1638%20-%20Outcome%20Of%20The%20Regulatory% 20Scoping% 20ExerciseFor% 20The% 20Use% 20Of% 20Maritime% 20Autonomous% 20Surface% 20Ships... %20(Secretariat).pdf.
    [27] IMO, M. Information on the common gaps and key issues related to the use of MASS identified in the IMO Instrument[R/OL]. (2022-06)[2024-01-03]. https://wwwcdn.imo.org/localresources/en/MediaCentre/PressBriefings/Documents/MSC. 1Circ. 1638% 20-% 20Outcome% 20Of% 20The% 20Regulatory%20Scoping%20ExerciseFor%20The%20Use% 20Of% 20Maritime% 20Autonomous% 20Surface% 20Ships... %20(Secretariat). pdf.
    [28] ALLAL A A, MANSOURI K, YOUSSFI M, et al. Toward a reliable main engine lubricating oil system for a safe operation of autonomous ship[C]. 2017 2nd International Conference on System Reliability and Safety(ICSRS), Milan, Italy; IEEE, 2017.
    [29] GUAN S, WANG J, JIANG C, et al. Efficient On-demand UAV deployment and configuration for off-shore relay communications[C]. 2021 International Wireless Communications and Mobile Computing (IWCMC), Harbin, China: IEEE, 2021.
    [30] COSSENTINO M, LOPES S, RENDA G, et al. Smartness and autonomy for shipboard power systems reconfiguration[C]. Modelling and Simulation for Autonomous Systems: 6th International Conference, MESAS 2019, Palermo, Italy: Springer, 2020.
    [31] ELLEFSEN A L, AESOY V, USHAKOV S, et al. A comprehensive survey of prognostics and health management based on deep learning for autonomous ships[J]. IEEE Transactions on Reliability, 2019, 68(2): 720-740. doi: 10.1109/TR.2019.2907402
    [32] Danish Maritime Authority. Analysis of regulatory barriers to the use of autonomous ships final report[R]. Danish: Danish Maritime Authority, 2017.
    [33] RØDSETH Ø J, WENNERSBERG L A. A criticism of proposed levels of autonomy for MASS[C]. The 33th European Safety and Reliability Conference(ESREL2023), Southampton, UK: ESRA, 2023.
    [34] KJELDSTAD B, KUFOALOR D. M, ULVENSØEN J H, et al. Evaluating the existing watchkeeping regulations as a baseline for developing functional requirements and performance criteria for uncrewed vessels[C]. The 33th European Safety and Reliability Conference(ESREL2023), Southampton, UK: ESRA, 2023.
    [35] BOLBOT V, OWEN D, CHAAL M, et al. Investigation of statutory and class society based requirements for electronic lookout[C]. The 33th European Safety and Reliability Conference(ESREL2023), Southampton, UK: ESRA, 2023.
    [36] 杨鑫, 袁科琛, 刘芳. 智能船舶船岸一体化系统应用[J]. 船海工程, 2019, 48(2): 45-47. https://www.cnki.com.cn/Article/CJFDTOTAL-WHZC201902012.htm

    YANG X, YUAN K C, LIU F. Application of ship-shore integration system in smart ship[J]. Ship & Ocean Engineering, 2019, 48(2): 45-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHZC201902012.htm
    [37] ABREU D T, MARTIN M R, MARURANA M C, et al. Review of human error assessment methods suitable for the design of maritime remote control rooms and processes[C]. The 33th European Safety and Reliability Conference(ESREL2023), Southampton, UK: ESRA, 2023.
    [38] PORATHE T. Alarm and hand-over concepts for human remote operators of autonomous ships[C]. The 33th European Safety and Reliability Conference(ESREL2023), Southampton, UK: ESRA, 2023.
    [39] LI Z H, WAN C P, MAO Z, et al. Investigating the impact of day-night conditions and time progression on the fatigue of maritime autonomous surface ship remote operators: implications for remote control centre design[C]. The 33th European Safety and Reliability Conference(ESREL2023), Southampton, UK: ESRA, 2023.
    [40] MORILLO C A, Leva M C, DEMICHELA M, et al. Revising the "ability corners" approach: A new strategy to assessing human capabilities in industrial domains[C]. The 33th European Safety and Reliability Conference (ESREL2023), Southampton, UK: ESRA, 2023.
    [41] HOLTE E A, WENNERSBERG L. A. Analysing the need for safety crew onboard autonomous passenger ships - a case study on urban passenger transport in Norwegian waters. [C]. The 33th European Safety and Reliability Conference(ESREL2023), Southampton, UK: ESRA, 2023.
    [42] HUANG Y M, WEI G Q, CHEN L Y, et al. Does redundant systems make a remote control MASS safer[C]. The 33th European Safety and Reliability Conference (ESREL2023), Southampton, UK: ESRA, 2023.
    [43] CHAAL M, BOLBOT V, BERRES A, et al. From aviation to maritime: An approach to define target safety levels for the safety assurance of autonomous ship systems[C]. The 33th European Safety and Reliability Conference (ESREL2023), Southampton, UK: ESRA, 2023.
    [44] WALLNER R, GRAN B A, PEDERSEN T A, et al. Identifying test scenarios for simulated safety demonstration using STPA and CAST[C]. The 33th European Safety and Reliability Conference (ESREL2023), Southampton, UK: ESRA, 2023.
    [45] BEJAOUI A, GADHAVI P, SHYSHOVA O, et al. Integration of human factors-related knowledge into decision support systems applied to assisted and automated operating vehicles using examples for inland vessels[C]. The 33th European Safety and Reliability Conference(ESREL2023), South-ampton, UK: ESRA, 2023.
    [46] YILDIZD M, CONSTAPEL M, BURMEISTER H C, et al. Quantitative risk assessment of a periodically unattended bridge[C]. The 33th European Safety and Reliability Conference(ESREL2023), Southampton, UK: ESRA, 2023.
    [47] MURRAY B, BELLINGMO P R, LIED T T, et al. Autoencoder-based anomaly detection for safe autonomous ship operations[C]. The 33th European Safety and Reliability Conference(ESREL2023), Southampton, UK: ESRA, 2023.
    [48] LEE C, LEE S. Considerable risk sources and evaluation factors for artificial intelligence in maritime autonomous systems[C]. The 33th European Safety and Reliability Conference(ESREL2023), Southampton, UK: ESRA, 2023.
    [49] JEON J, GERASIMOS T. Datasets envelope impact on marine engines prognostics and health management models accuracy[C]. The 33th European Safety and Reliability Conference(ESREL2023), Southampton, UK: ESRA, 2023.
    [50] MEHAK S, JAIN A, KELLEHER J D, et al. Understanding and quantifying human factors in programming from demonstration: a user study proposal[C]. The 33th European Safety and Reliability Conference (ESREL2023), Southampton, UK: ESRA, 2023.
    [51] WEISS K A, DULAC N, CHIESI S, et al. Engineering spacecraft mission software using a model-based and safety-driven design methodology[J]. Journal of Aerospace Computing, Information, and Communication, 2006(3): 562-586.
    [52] LEVENSON N. Intent specifications: an approach to building human-centered specifications[J]. IEEE Transactions on Software Engineering, 2000(26): 15-35.
    [53] THIEME M A R, CHRISTOPH A. Proceedings to the international workshop on autonomous systems safety[R/OL]. (2021-10)[2023-11-27]. https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2982327/Thieme% 2Bet% 2Bal.% 2B-% 2B2021% 2B-% 2BProceedings% 2Bof% 2Bthe% 2BInternational%2BWorkshop%2Bon%2BAutonomous%2BSystems% 2BSafety% 2BIWASS% 2B2021-annotated.pdf?sequence=1.
    [54] PATRIARCA R, DI GRAVIO G, WOLTJER R, et al. Framing the FRAM: a literature review on the functional resonance analysis method[J]. Safety Science, 2020, 129: 104827. doi: 10.1016/j.ssci.2020.104827
    [55] HIROSE T, SAWARAGI T, NOMOTO H, et al. Functional safety analysis of SAE conditional driving automation in time-critical situations and proposals for its feasibility[J]. Cognition, Technology & Work, 2021, 23: 639-657.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  593
  • HTML全文浏览量:  305
  • PDF下载量:  316
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-27
  • 网络出版日期:  2024-04-03

目录

    /

    返回文章
    返回