A Cooperative Recovery Strategy for Massive Flight Delays Based on Satisficing Game Theory
-
摘要: 航空运输中恶劣天气、军航活动、突发危险事件等情况常导致大面积航班延误的发生,会给机场和航空公司带来巨大经济损失,甚至可能发生机场旅客群体事件等问题,而大面积航班延误恢复问题涉及空管、机场和航空公司等多方的运行及其相关利益,因此,需要研究基于多方满意的协同恢复策略理论来指导实际运行中大面积航班延误的最优快速恢复。应用满意博弈论方法,综合考虑了延误航班的恢复对机坪管制的影响、对管制扇区和整个空中交通网络拥堵的影响,以及对航空公司的经济时间等各类成本的影响;分析延误航班恢复运行与决策的影响因素,建立保障未延误航班前提下的最大流量提供模型;以空管放行流量、机场保障容量限制及航司的延误航班恢复为满意需求原则,基于满意博弈论理论建立了大面积航班延误下空管、机场与航空公司的协同恢复策略模型。以北京首都机场某日07:00—12:30被延误起飞的50架航班在12:30—16:30时间段内航班延误恢复情况进行算例分析,结果表明:提出的模型与方法在12:30—16:30时间段内可以恢复32架航班,与实际运行中的恢复29架航班相比,航班恢复率提高了10.34%。计算得出的航班恢复优先顺序,及每架航班的待恢复时间段,可以减少航空公司延误产生的经济损失约300万元,节约时间成本约19 h,有效降低了航班调整量,大幅降低了航班延误损失,提升了航班恢复整体效益,验证了该恢复策略模型的有效性。Abstract: Severe weather conditions, intervention from military activities, and other unforeseen hazards frequently lead to the massive flight delays in the aviation sector. This will bring significant economic losses for airports and airlines and may even result in problems such as incidents due to passenger crowding at airports. Recovery of massive flight delays involves the operation and related interests of multiple stakeholders, such as air traffic control, airports and airlines. Therefore, it is necessary to study a cooperative recovery strategy based on the satisfaction of the above parties to guide the optimal and rapid recovery of massive flight delays in practical airport operation. Applying the satisficing game theory method considers various costs, including the impact of the delayed flights on ramp control, congestion within control sectors, the entire air traffic network, and the economic losses of airlines. This study also analyzes the factors influencing the recovery operations and decisions for delayed flights by proposing a model that maximizes air flow while ensuring the recovery of flights without further delay. Additionally, a collaborative recovery strategy model for air traffic control, airports, and airlines under massive flight delays based on the principles of satisficing game theory is developed. The model considers the principles of air traffic control release flow, airport capacity, and the recovery of delayed flights by airlines. An illustrative case study is conducted for the recovery of 50 delayed flights that were scheduled to depart from Beijing Capital International Airport from 07:00 to 12:30. The findings show that, the proposed model and methodology facilitate the recovery of 32 flights during 12:30 to 16:30 time frame, showcasing a 10.34% increase compared to the actual recovery of 29 flights. Moreover, the estimated order of flight recovery and the time window for each flight's recovery reduce the economic losses incurred by airlines by approximately 3 million Chinese Yuan and save approximately 19 hours in time costs. The strategy also effectively reduces the flight adjustment volume, significantly mitigates the flight delay losses, and enhances the overall benefits of flight recovery, thus validating the effectiveness of the recovery strategy model.
-
表 1 航班信息
Table 1. Flight information
航班 航空公司 机型 尾流 旅客数量/人 重要旅客/人 赔付费用/元 起飞时间 连续航班/架 1 B A321 M 220 10 3 000 07:15 3 2 C A333 H 302 16 2 800 07:20 3 3 C A320 M 208 8 2 500 07:25 2 4 A B737 M 158 15 2 600 07:30 2 5 D A319 M 156 9 2 700 07:35 3 6 B B735 M 162 7 2 300 07:40 3 7 A A320 M 155 9 2 500 07:50 2 8 C A333 H 278 6 2 500 08:00 2 9 A B735 M 213 10 2 600 08:05 3 10 D B737 M 142 12 2 700 08:10 3 11 B A320 M 148 9 2 900 08:20 3 12 B B742 H 340 19 3 100 08:25 2 13 A A319 M 188 7 2 700 08:30 1 14 C A320 M 140 13 2 600 08:35 3 15 C A321 M 219 4 2 500 08:45 2 16 A B737 M 167 15 2 400 08:50 3 17 C B787 H 307 11 2 300 09:00 2 18 C B737 M 150 10 2 700 09:05 1 19 A A321 M 139 6 2 500 09:20 2 20 B A319 M 124 22 2 800 09:30 2 21 A B777 H 368 30 2 600 09:40 3 22 B A321 M 215 17 2 600 09:45 2 23 C A332 M 230 12 2 400 09:50 1 24 D A320 M 182 6 2 800 10:15 3 25 A B735 M 195 16 2 600 10:20 2 26 A B747 H 380 25 2 900 10:20 3 27 B B737 M 220 10 2 500 10:25 1 28 C B738 M 175 12 2 500 10:30 1 29 D A320 M 181 9 2 400 10:35 2 30 B A321 M 205 21 2 800 10:40 2 31 B B738 M 223 12 2 700 10:45 3 32 D A321 M 217 9 2 600 10:45 2 33 A B738 M 190 8 2 400 10:50 2 34 A A380 H 405 22 2 600 10:50 3 35 C B737 M 214 6 2 600 10:55 1 36 B A332 H 246 23 2 500 11:00 3 37 D A321 M 199 15 2 800 11:05 2 38 A B787 H 322 30 2 700 11:15 2 39 C B737 M 205 5 2 300 11:20 3 40 B A319 M 130 3 2 600 11:30 2 41 D B737 M 211 10 2 800 11:35 2 42 A A320 M 234 11 2 900 11:40 1 43 C A321 M 200 16 2 500 11:50 3 44 B A333 M 243 9 2 400 11:55 2 45 C B773 H 483 28 3 000 12:05 3 46 B B737 M 207 6 2 800 12:10 3 47 B A321 M 203 15 2 700 12:15 2 48 C A321 M 216 5 2 600 12:20 2 49 A B747 H 387 18 2 500 12:25 2 50 D A319 M 123 2 2 200 12:30 1 表 2 航班选择概率及恢复优先级序排名1
Table 2. Flight selection probability and recovery priority ranking 1
航班 时间权重 时间优先度 旅客权重 旅客优先度 运营权重 运营优先度 1 0.39 0.20 0.35 1.12 0.26 1.26 2 0.58 0.55 0.35 1.44 0.07 4.97 3 0.39 0.56 0.35 0.89 0.26 1.22 4 0.38 0.40 0.36 0.70 0.26 1.20 5 0.39 0.08 0.35 0.72 0.26 1.18 6 0.39 0.26 0.35 0.63 0.26 1.16 7 0.39 0.46 0.35 0.66 0.26 1.22 8 0.59 0.65 0.34 1.18 0.07 4.33 9 0.39 0.49 0.35 0.94 0.26 1.06 10 0.38 0.17 0.36 0.65 0.26 1.04 11 0.39 0.36 0.35 0.73 0.26 1.00 12 0.58 0.38 0.35 1.80 0.07 3.93 13 0.39 0.56 0.35 0.86 0.26 0.96 14 0.38 0.88 0.36 0.62 0.26 0.94 15 0.40 0.77 0.34 0.93 0.26 0.90 16 0.38 0.61 0.36 0.68 0.26 0.88 17 0.58 0.80 0.35 1.20 0.07 3.37 18 0.39 0.82 0.35 0.69 0.26 0.82 19 0.39 0.69 0.35 0.59 0.26 0.76 20 0.35 0.55 0.39 0.59 0.26 0.72 21 0.57 0.74 0.36 1.63 0.07 2.72 22 0.38 0.58 0.36 0.95 0.26 0.66 23 0.39 0.93 0.35 0.94 0.26 0.64 24 0.40 0.49 0.34 0.87 0.26 0.54 25 0.38 0.84 0.36 0.86 0.26 0.52 26 0.57 0.84 0.35 1.18 0.07 2.08 27 0.39 0.69 0.35 0.94 0.26 0.50 28 0.38 1.04 0.36 0.75 0.26 0.48 29 0.39 0.54 0.35 0.74 0.26 0.46 30 0.37 0.73 0.37 0.98 0.26 0.44 31 0.39 0.74 0.35 1.03 0.26 0.42 32 0.39 0.57 0.35 0.96 0.26 0.42 33 0.39 0.92 0.35 0.78 0.26 0.40 34 0.58 0.92 0.35 1.79 0.07 1.60 35 0.40 1.10 0.34 0.95 0.26 0.38 36 0.56 0.78 0.36 1.05 0.07 1.44 37 0.38 0.29 0.36 0.95 0.26 0.34 38 0.56 0.98 0.36 1.48 0.07 1.20 39 0.40 1.17 0.34 0.80 0.26 0.28 40 0.40 0.86 0.34 0.58 0.26 0.24 41 0.39 0.36 0.35 1.01 0.26 0.22 42 0.39 1.05 0.35 1.16 0.26 0.20 43 0.38 1.24 0.36 0.85 0.26 0.16 44 0.39 0.92 0.35 0.99 0.26 0.14 45 0.57 1.28 0.35 2.47 0.07 0.40 46 0.40 0.96 0.34 0.99 0.26 0.08 47 0.38 0.97 0.36 0.93 0.26 0.06 48 0.40 1.32 0.34 0.96 0.26 0.04 49 0.58 0.83 0.35 1.65 0.07 0.08 50 0.40 0.84 0.34 0.46 0.26 0.00 表 3 航班选择概率及恢复优先级序排名2
Table 3. Flight selection probability and recovery priority ranking 2
航班 恢复因子 综合优先度 选择概率 恢复航班 恢复排名 1 1.65 1.32 0.491 45 1 2 1.65 1.93 0.717 26 2 3 1.40 1.18 0.439 34 3 4 1.40 1.00 0.372 21 4 5 1.65 0.97 0.360 2 5 6 1.65 1.03 0.383 38 6 7 1.40 0.98 0.364 12 7 8 1.40 1.52 0.565 17 8 9 1.65 1.31 0.487 8 9 10 1.65 0.94 0.349 36 10 11 1.65 1.08 0.401 49 11 12 1.40 1.57 0.583 39 12 13 1.18 0.91 0.338 43 13 14 1.65 1.32 0.491 1 14 15 1.40 1.20 0.446 9 15 16 1.65 1.16 0.431 14 16 17 1.40 1.56 0.580 31 17 18 1.18 0.92 0.342 15 18 19 1.40 0.94 0.349 46 19 20 1.40 0.85 0.316 48 20 21 1.65 1.98 0.736 3 21 22 1.40 1.03 0.383 16 22 23 1.18 1.01 0.375 11 23 24 1.65 1.04 0.387 25 24 25 1.40 1.07 0.398 24 25 26 1.65 2.12 0.788 30 26 27 1.18 0.86 0.320 44 27 28 1.18 0.93 0.346 6 28 29 1.40 0.82 0.305 22 29 30 1.40 1.04 0.387 23 30 31 1.65 1.25 0.465 33 31 32 1.40 0.93 0.346 35 32 33 1.40 1.03 0.383 42 33 34 1.65 2.10 0.780 4 34 35 1.18 1.02 0.379 47 35 36 1.65 1.51 0.561 5 36 37 1.40 0.76 0.282 7 37 38 1.40 1.63 0.606 10 38 39 1.65 1.34 0.498 19 39 40 1.40 0.84 0.312 28 40 41 1.40 0.77 0.286 32 41 42 1.18 1.03 0.383 13 42 43 1.65 1.35 0.502 18 43 44 1.40 1.04 0.387 20 44 45 1.65 2.68 0.996 27 45 46 1.65 1.22 0.453 29 46 47 1.40 1.00 0.372 40 47 48 1.40 1.21 0.450 41 48 49 1.40 1.49 0.554 37 49 50 1.18 0.58 0.216 50 50 表 4 进离港航班及扇区额外流量
Table 4. Inbound and outbound flow and additional flow in sectors
单位: 架 时间段 进港航班数 离港航班数 计划进离港总数 扇区额外流量 12:30—13:00 16 13 29 2 13:00—13:30 15 16 31 4 13:30—14:00 18 15 33 5 14:00—14:30 17 17 34 1 14:30—15:00 19 14 33 3 15:00—15:30 15 15 30 5 15:30—16:00 17 16 33 3 16:00—16:30 14 18 32 4 表 5 机场与扇区容量与极限流量
Table 5. Capacity and limit flow of Airport and sector
时间段 机场容量 机场极限流量 扇区容量 扇区极限流量 12:30—13:00 32 38 33 43 13:00—13:30 33 40 35 45 13:30—14:00 35 42 36 44 14:00—14:30 34 40 36 44 14:30—15:00 36 43 37 45 15:00—15:30 32 38 34 42 15:30—16:00 35 44 36 44 16:00—16:30 36 43 38 47 表 6 机场拥堵程度表
Table 6. Congestion scale of airport
机场额外恢复航班数 进离港航班总数/架 拥堵程度 机场选择概率 4 33 0.11 0.89 5 34 0.22 0.78 6 35 0.33 0.67 7 36 0.44 0.56 8 37 0.56 0.44 9 38 0.67 0.33 10 39 0.78 0.22 11 40 0.89 0.11 12 41 1.00 0 表 7 空管拥堵程度
Table 7. Congestion scale of ATC
空管额外接受的航班数/架 进离港航班总数/架 拥堵程度 管制选择概率 4 33 0.35 0.96 5 34 0.07 0.93 6 35 0.14 0.86 7 36 0.21 0.79 8 37 0.29 0.71 9 38 0.35 0.65 10 39 0.42 0.58 11 40 0.50 0.50 12 41 0.57 0.43 13 42 0.64 0.36 14 43 0.71 0.29 15 44 0.79 0.21 16 45 0.86 0.14 17 46 0.93 0.07 18 47 1.00 0 表 8 机场与空管提供流量
Table 8. Provided flow by airport and ATC
单位: 架 时间段 机场满意策略最大值 空管满意策略最大值 提供流量 累积提供总流量 12:30—13:00 7 9 7 7 13:00—13:30 7 5 5 12 13:30—14:00 7 4 4 16 14:00—14:30 6 6 6 22 14:30—15:00 8 7 7 29 15:00—15:30 6 5 5 34 表 9 根据协同恢复策略恢复的航班排序及恢复时段
Table 9. Resume flight sequencing and recovery period recovered according to cooperative recovery strategy
时间段 恢复航班数量/架 恢复航班 12:30—13:00 7 45-26-34-21-2-38-12 13:00—13:30 5 17-8-36-49-39 13:30—14:00 4 43-1-9-14 14:00—14:30 6 31-15-46-48-3-16 14:30—15:00 7 11-25-24-30-44-6-22 15:00—15:30 3 23-33-35 表 10 实际恢复航班排序及恢复时段
Table 10. Actual resume flight sequencing and recovery period
时间段 恢复航班数量/架 恢复航班 12:30—13:00 3 1-2-3 13:00—13:30 3 6-8-11 13:30—14:00 4 9-12-14-17 14:00—14:30 6 15-16-21-22-23-24 14:30—15:00 6 25-26-30-31-33-34 15:00—15:30 7 35-38-39-43-44-46-48 表 11 根据协同恢复策略恢复航班的延误时间
Table 11. Resume flight delay time according to cooperative recovery strategy
时间段 恢复航班 计划起飞时间 延误时间/min 45 12:05 55 26 10:20 160 34 10:50 130 12:30—13:00 21 09:40 200 2 07:20 340 38 11:15 105 12 08:25 275 17 09:00 270 8 08:00 330 13:00—13:30 36 11:00 150 49 12:25 65 39 11:20 130 43 11:50 130 13:30—14:00 1 07:15 405 9 08:05 355 14 08:35 325 31 10:45 225 15 08:45 345 14:00—14:30 46 12:10 140 48 12:20 130 3 07:25 425 16 08:50 340 11 08:20 340 25 10:20 280 24 10:15 285 14:30—15:00 30 10:40 260 44 11:55 185 6 07:40 440 22 09:45 315 23 09:50 340 15:00—15:30 33 10:50 280 35 10:55 275 表 12 实际恢复航班的延误时间
Table 12. Actual resume flight delay time
时间段 恢复航班 计划起飞时间 延误时间/min 1 07:15 345 12:30—13:00 2 07:20 340 3 07:25 335 6 07:40 350 13:00—13:30 8 08:00 330 11 08:20 310 9 08:05 355 13:30—14:00 12 08:25 335 14 08:35 325 17 09:00 300 15 08:45 345 16 08:50 340 14:00—14:30 21 09:40 290 22 09:45 285 23 09:50 280 24 10:15 255 25 10:20 280 26 10:25 275 14:30—15:00 30 10:40 260 31 10:45 255 33 10:50 250 34 10:50 250 35 10:55 275 38 11:15 255 39 11:20 250 15:00—15:30 43 11:50 220 44 11:55 215 46 12:10 200 48 12:20 190 -
[1] TEODOROVIC D, GUBERINIC S. Optimal dispatching strategy on an airline network after a schedule perturbation[J]. European Journal of Operational Research, 1984, 15 (2): 178-182. doi: 10.1016/0377-2217(84)90207-8 [2] CAO J, KANAFANI A. Real-time decision support for integration of airline flight cancellations and delays, part I: mathematical formulations[J]. Transportation Planning and Technology, 1997, 20(3): 183-199. doi: 10.1080/03081069708717588 [3] ARIAS P, MOTA M, GUIMARANS D, et al. A methodology combining optimization and simulation for real applications of the stochastic aircraft recovery problem[C]. 8th EUROSIM Congress on Modelling and Simulation, Cardiff, UK: 2013, IEEE, 2013. [4] BRATU S, BARNHART C. Flight operations recovery: new approaches considering passenger recovery[J]. Springer Science Business Media, 2006, 13(9): 279-298. [5] PEI S, HE Y, FAN Z, et al. Decision support system for the irregular flight recovery problem[J]. Research in Transportation Business and Management, 2020, 38(2): 100501. [6] 詹晨旭, 乐美龙. 非正常航班管理中的飞机恢复问题研究[J]. 中国民航大学学报, 2012, 30(2): 43-47. doi: 10.3969/j.issn.1001-5590.2012.02.011ZHAN C X, LE M L. Study on aircraft recovery problem under airline's irregular flight management[J]. Journal of Civil Aviation University of China, 2012, 30(2): 43-47. (in Chinese) doi: 10.3969/j.issn.1001-5590.2012.02.011 [7] 曲倩倩. 混合遗传算法求解航班延误恢复调度[J]. 科技创新与应用, 2013(16): 28-29.QU Q Q. Hybrid genetic algorithm for recovery scheduling of flight delays[J]. Technology Innovation and Application, 2013 (16): 28-29. (in Chinese) [8] 陆荣琴, 赵小梅, 毕军, 等. 基于航班综合影响因素的延误航班重排问题的整数规划模型[J]. 交通运输研究, 2017, 3 (3): 36-42.LU R Q, ZHAO X M, BI J, et al. An integral programming model to reschedule delayed flights based on comprehensive factors[J]. Transport Research, 2017, 3(3): 36-42. (in Chinese) [9] 王小萌, 牟奇锋, 周瑾. 航班延误成本量化方法研究[J]. 科技和产业, 2023, 23(18): 151-155.WANG X M, MOU Q F, ZHOU J. Research on quantitative methods for flight delay costs[J]. Science Technology and Industry, 2023, 23(18): 151-155. (in Chinese) [10] 任杰, 王莉莉. 基于最小延误时间和经济成本的空中高速路匝口排序研究[J]. 数学的实践与认识, 2023, 53(5): 22-31.REN J, WANG L L. Study on aircraft scheduling for highway-in-the-sky ramp based on the minimum delay cost model[J]. Mathematics in Practice and Theory, 2023, 53(5): 22-31. (in Chinese) [11] LEE J, MARLA L, JACQUILLAT A. Dynamic disruption management in airline networks under airport operating uncertainty[J]. Transportation Science, 2020, 54 (4): 973-997. doi: 10.1287/trsc.2020.0983 [12] VINK J, SANTOS B F, VERHAGEN W, et al. Dynamic aircraft recovery problem - An operational decision support framework[J]. Computers & Operations Research, 2020, 117: 1-15. [13] 徐海文, 汪腾. 考虑航路网络结构的离场航班延误预测模型[J]. 科学技术与工程, 2023, 23(11): 4734-4744.XU H W, WANG T. Departure flight delay predication model considering air route network structure[J]. Science Technology and Engineering, 2023, 23(11): 4734-4744. (in Chinese) [14] SHAO Q, SHAO M X, BIN Y P, et al. Flight recovery method of regional multiairport based on risk control model[J]. Mathematical Problems in Engineering, 2020(7): 1-18. [15] 何坚, 果红艳, 姚远, 等. 基于有效中转时间预测的不正常航班恢复技术[J]. 北京航空航天大学学报, 2022, 48(3): 384-393.HE J, GUO H Y, YAO Y, et al. Irregular flight recovery technique based on accurate transit time prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (3): 384-393. (in Chinese) [16] 严宇, 熊静, 陈聪聪, 等. 基于跑道容量的航班恢复优化调度[J]. 物流科技, 2022, 45(2): 99-102, 112.YAN Y, XIONG J, CHEN C C, et al. Optimal scheduling of flight recovery based on runway capacity[J]. Logistics Sci-Tech, 2022, 45(2): 99-102, 112. (in Chinese) [17] 王楠, 戴福青, 齐雁楠. 基于跑道容量的航班恢复优化模型[J]. 科学技术与工程, 2020, 20(15): 6279-6285.WANG N, DAI F Q, QI Y N. Flight recovery optimization model based on runway capacity[J]. Science Technology and Engineering, 2020, 20(15): 6279-6285. (in Chinese) [18] 张静, 徐明华, 曹伟建, 等. 不正常航班恢复模型和算法研究[J]. 数学的实践与认识, 2018, 48(15): 145-152.ZHANG J, XU M H, CAO W J, et al. Research on modeling and algorithm for irregular flight recovery[J]. Mathematics in Practice and Theory, 2018, 48(15): 145-152. (in Chinese) [19] 杨旻昊. 航班次衍生延误传播机理研究[D]. 南京: 航空航天大学, 2020.YANG M H. Research on the mechanism of flight derivative delay propagation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. (in Chinese) [20] 王晶华. 机场大面积航班延误传播模型及预测研究[D]. 中国民航大学, 2019.WANG J H. Research on propagation model and prediction of airport large-scale flight delay[D]. Tianjin: Civil Aviation University of China, 2019. (in Chinese) [21] 武喜萍, 杨红雨, 韩松臣. 基于复杂网络的空中交通特征与延误传播分析[J]. 航空学报, 2017, 38(增刊1): 113-119.WU X P, YANG H Y, HAN S C. Analysis of properties and delay propagation of air traffic based on complex network[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38 (S1): 113-119. (in Chinese) [22] 闵嘉诚. 基于Copula函数和贝叶斯网络的航班延误波及效应研究[D]. 苏州: 苏州大学, 2021.MIN J C. A study on flight delay propagation based on Copula function and Bayesian network[D]. Suzhou: Soochow University, 2021. (in Chinese) [23] 王兴隆, 许晏丰, 纪君柔. 基于VMD-MD-Clustering方法的航班延误等级分类[J]. 交通信息与安全, 2022, 40(3): 171-178. doi: 10.3963/j.jssn.1674-4861.2022.03.018WANG X L, XU Y F, JI J R. Classification of the level of flight delay based on aVMD-MD-Clustering method[J]. Journal of Transport Information and Safety, 2022, 40(3): 171-178. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.03.018 [24] 管祥民, 吕人. 基于满意博弈论的复杂低空飞行冲突解脱方法[J]. 航空学报, 2017, 38(增刊1): 120-128.GUAN X M, LYU R. Aircraft conflict resolution method based on satisfying game theory[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1): 120-128. (in Chinese) [25] 史妙恬. 航空运输网络中不确定性因素对航班延误波及的影响研究[D]. 南京: 南京航空航天大学, 2017.SHI M T. Research on the flight delay propagation in aviation network under uncertainty factor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. (in Chinese) [26] 张洪海, 胡明华. CDM GDP飞机着陆时隙多目标优化分配[J]. 系统管理学报, 2009, 18(3): 302-308.ZHANG H H, HUM H. Multi-objection optimization allocation of aircraft landing slot in CDM GDP[J]. Journal of Systems & Management, 2009, 18(3): 302-308. (in Chinese)