An Automatic Freeway Incident Detection Algorithm using Vehicle Trajectories
-
摘要: 高速公路异常事件自动检测是有效保障道路交通安全和运输效率的重要手段,由于监控视频数据量巨大,现有自动检测算法存在实时性、准确性低的问题。为此本文提出了基于轨迹分类的对比性悲观似然(comparative pessimistic likelihood estimation,CPLE)算法。构建了包含车辆检测、车辆跟踪和轨迹分类3种功能的异常事件自动检测模型框架,采用YOLO v3对车辆进行目标检测,获得4类不同车辆类型的相关信息,采用简单在线和实时跟踪算法对车辆进行多目标跟踪,获得不同场景的异常事件车辆轨迹;基于半监督学习,采用极大似然法对车辆轨迹分类进行改进,引入对比性悲观似然估计,围绕其对比和悲观原则进行参数设置和标定,进行异常事件轨迹分类和确认,提出基于车辆轨迹的异常事件自动检测算法。以甘肃省G312线公路智能化检测系统为测试对象,共收集1 300段视频,形成530条测试集轨迹和630条验证集轨迹,测试结果表明:通过对不同场景异常事件进行检测和预警,基于对比性悲观似然估计的轨迹分类算法性能准确率达到89.7%,比自学习和监督学习方法的准确率分别高出23.6%和41.3%,尽管对散落货物和超速事件的检测正确性稍低,平均为77.0%, 但突发性停车、拥堵和事故的检测平均正确率达98.2%,在严重影响交通的事件检测方面的平均正确率达到94%。本方法丰富了高速公路异常事件自动检测算法,可作为异常事件自动检测提供备选方法。Abstract: An automatic freeway incident detection method is important for maintaining a safe, efficient traffic operation. Due to the fact that a large number of surveillance videos may hinder the real-time and accurate response of current automatic incident detection algorithms, a comparative pessimistic likelihood estimation (CPLE) algorithm based on trajectory classification is proposed. A framework for automatic detection of anomalous events, which contains vehicle detection, vehicle tracking and trajectory classification, is developed. YOLO v3 is employed to detect the vehicles, and related information about four different types of vehicles is obtained. Online real-time tracking algorithms are used for multi-target tracking of vehicles. Anomalous event vehicle trajectories are obtained for different scenarios. Based on semi-supervised learning, the maximum likelihood method is employed to improve the classification of vehicle trajectories. CPLE is introduced and parameter setting and labeling are centered on comparison and pessimistic rules in order to classify and determine the incident trajectories, consequently, the automatic incident detection algorithm based on vehicle trajectories is proposed. The intelligent inspection system of Gansu Province G312 highway is used as a test object. A total of 1 300 videos were collected. Among them, 530 and 630 tracks are employed as test set and validation set, respectively. By testing difference scenarios of incidents and prewarning, the algorithm accuracy of trajectory classification based on CPLE reaches 89.7%, which is 23.6% higher than that of self-learning and 41.3% higher than that of supervised learning, respectively. Although the accuracy of scattered goods and speeding is averaged about 77.0%, the accuracy of sudden stopping, congestion, and accidents reaches 98.2%, and as for the incident detection influencing traffic seriously, the average accuracy reaches 94%. The proposed method enriches automatic incident detection algorithms and can be considered an alternative for freeway incident detection.
-
Key words:
- traffic safety /
- freeway /
- vehicle trajectory /
- YOLO v3 /
- SORT /
- comparative pessimistic likelihood estimation
-
表 1 数据分类
Table 1. Data classification
类型 正常 异常 测试集 验证集 有标签数据 15 15 530 630 无标签数据 1 000 530 630 表 2 检测算法性能对比
Table 2. Accuracy comparison of detection algorithm
算法 CP CN AC 改善效果/% CPLE 84 92 0.89 自学习 56 88 0.72 23.6 监督学习 59 96 0.63 41.3 表 3 异常事件报警正确率统计
Table 3. Statistics of incidents alarming accuracy rate
事件类型 报警总数 正确数 误报数 正确率/% 散落货物 50 36 14 72.0 突发性停车 5 315 5 097 218 95.9 超速 128 105 23 82.0 拥堵 141 139 2 98.6 事故 4 4 0 100.0 -
[1] 李浩澜. 基于视频图形的高速公路异常事件实时检测系统[D]. 重庆: 重庆理工大学, 2020.LI H L. A real-time detection system for abnormal events of highway based on image[D]. Chongqing: Chongqing University of Technology, 2020. (in Chinese) [2] 常丹丹. 基于深度学习的公路货物运输量预测方法研究[D]. 西安: 长安大学, 2018.CHANG D D. Research on volume of road cargo transportation forecasting method based on deep learning[D]. Xi'an: Chang'an University, 2018. (in Chinese) [3] EVANS J, WATERSON B, HAMILTON A. Evolution and future of urban road incident detection algorithms[J]. Journal of Transportation Engineering Part A: Systems, 2020, 146(6): 03120001. doi: 10.1061/JTEPBS.0000362 [4] MASTERS P H, LAM J, WONG K. Incident detection algorithms for COMPASS-An advanced traffic management system[C]. Vehicle Navigation and Information Systems Conference, New York, U. S. A. : IEEE, 1991. [5] LEVEN M, Krause G M. Incident detection: A Bayesian approach[J]. Transportation Research Record, 1978(682): 52-58. [6] LYALL B B. Performance evaluation of the McMaster incident detection algorithm[D]. Ontario: McMaster University, 1991. [7] AHMED S A, COOK A R. Application of time-series analysis techniques to freeway incident detection[J]. Transportation Research Record, 1982(841), 19-21. [8] CREMER M, SCHUTT H. A comprehensive concept for simultaneous state observation, parameter estimation and incident detection[C]. The 11th International Symposium on Transportation and Traffic Theory, Amsterdam, Netherlands: Elsevier, 1990. [9] TENG H, QI Y. Application of wavelet technique to freeway incident detection[J]. Transportation Research Part C: Emerging Technologies, 2003, 11(3/4): 289-308. [10] 朱金凤. 基于YOLO-v3的高速公路交通事件检测系统研究[D]. 徐州: 中国矿业大学, 2020.ZHU J F. Research on expressway traffic incident detection system based on YOLO-v3[D]. Xuzhou: China University of Mining and Technology, 2020. (in Chinese) [11] MICHALOPOULOS P G. Vehicle detection video through image processing: the Autoscope system[J]. Transactions on Vehicular Technology, 1991, 40(1): 21-29. doi: 10.1109/25.69968 [12] CHARKRABORTY P. Freeway traffic incident detection using large scale traffic data and cameras[D]. Iowa: Iowa State University, 2019. [13] 冯汝怡, 李志斌, 吴启范, 范昌彦. 航拍视频车辆检测目标关联与时空轨迹匹配[J]. 交通信息与安全, 2021, 9(2): 61-69. doi: 10.3963/j.jssn.1674-4861.2021.02.008FENG R Y, LI Z B, WU Q F, et al. Association of vehicle object detection and the time-space trajectory matching from aerial videos[J]. Journal of Transport Information and Safety, 2021, 9(2): 61-69. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.02.008 [14] LIN Y, LI L, JING H, et al. Automated traffic incident detection with a smaller dataset based on generative adversarial networks[J]. Accident Analysis & Prevention, 2020(4): 105628. [15] 乔鹏. 基于深度学习和边缘任务卸载的交通流量检测研究[D]. 西安: 西安电子科技大, 2019.QIAO P. Research on traffic flow detection based on deep learning and edge task offloading[D]. Xi'an: Xi Dian University, 2019. (in Chinese) [16] 高新闻, 沈卓, 许国耀, 等. 基于多目标跟踪的交通异常事件检测[J]. 计算机应用研究, 2021, 38(6): 1879-1883 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202106054.htmGAO X W, SHEN Z, XU G Y, et al. Traffic anomaly detection based on multi-target tracking[J]. Application Research of Computers, 2021, 38(6): 1879-1883. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202106054.htm [17] 孙士杰. 复杂交通场景下多目标检测跟踪问题研究[D]. 西安: 长安大学, 2019.SUN S J. Research on multiple object detection and tracking problems in complex traffic scenes[D]. Xi'an: Chang'an University, 2019. (in Chinese) [18] 高铭. 基于深度学习的复杂交通环境下目标跟踪与轨迹预测研究[D]. 长春: 吉林大学, 2020.GAO M. Research on object tracing and trajectory prediction in complex environment based on deep learning[D]. Changchun: Jilin University, 2020. (in Chinese) [19] 杨明辉. 基于循环神经网络的运动目标轨迹预测[D]. 武汉: 武汉大学, 2019.YANG M H. Trajectory prediction of moving target based on recurrent neural network[D]. Wuhan: Wuhan University, 2019. (in Chinese)