A Joint Mode Choice Behavior Model of Long-distance Intercity Passenger Travel during the Periods with Regular Epidemic Prevention and Control Measures
-
摘要: 新冠肺炎疫情对旅客中长距离的城际交通出行影响巨大,现有研究侧重疫情暴发初期疫情对城际交通出行的影响,针对常态化疫情防控阶段旅客城际出行选择行为的研究相对较少,因此,本文旨在研究常态化疫情防控阶段旅客中长距离城际出行选择行为。针对民航、高铁、普铁和自驾等方式分别建立包含4种城际出行方式的多指标多因果出行选择模型(MIMIC),模型中引入感知防疫安全程度、防疫策略、乘车体验与出行习惯4个潜变量,探究潜变量与观测变量的因子载荷并辨识模型参数,求取各潜变量的拟合值;在此基础上建立考虑出行方式特性、旅客社会经济属性与潜变量的多出行方式联合选择行为模型(MIMIC-Logit),探究常态化疫情防控阶段旅客出行心理对其出行决策的影响;假设出行费用、时间与距离等变量的随机系数服从正态分布,采用抽样1000次的Halton序列对随机系数进行仿真求解,得到随机系数的回归分析结果。以2021年4月—6月到达西安旅客的调查数据为例进行实证研究,结果发现:所提MIMIC-Logit模型的拟合优度与命中率分别为43.621%与83.312%,均高于多项Logit模型与随机系数Logit模型;旅客对不同方式的出行费用、时间与距离的偏好具有异质性,且出行方式特性、社会经济属性与潜变量都对出行选择的效用有显著影响。弹性分析表明,当感知防疫安全程度与防疫策略提升了100%时,旅客选择民航出行的概率分别提升了23.207%与21.349%;而当乘车体验提升了100%时,旅客选择高铁出行的概率提升了18.229%。综上,所提方法揭示了潜变量对旅客出行选择行为的显著影响;通过提升感知防疫安全程度、防疫策略与乘车体验等手段,可以提升旅客选择高铁、民航出行的概率。
-
关键词:
- 交通工程 /
- 城际出行选择 /
- MIMIC-Logit模型 /
- 潜变量 /
- 新冠疫情
Abstract: The impact of COVID-19 on long-distance intercity travel is enormous. Existing studies have investigated the impact of COVID-19 on intercity travel at the early stage of the epidemic outbreak, while few of them have studied its impact during the periods with regular prevention and control measures. To fill the gap, this paper focuses on the mode choice behavior of long-distance intercity travel under the impact of regular prevention and control measures of the COVID-19 epidemic. First, a set of multiple indicators and multiple causes (MIMIC) models are developed for civil aviation, high-speed rail, train, and passenger car, independently, and each covers the four modes. The perceived level of safety of prevention measures, epidemic prevention strategies, riding experience, and travel habits are considered in the MIMIC choice behavior model, which are used to explore the relationship between observed and latent variables, to identify the parameters of the model, and to estimate each latent variable. Secondly, to investigate the impact of passengers' psychology on their travel mode choices, a MIMIC-Logit model considering the characteristics of travel modes, socio-economic attributes of passengers, and latent variables is developed. Then, assuming that the random coefficients of passengers' travel expenses, travel time, and travel distance follow a normal distribution, the Halton sequence drawn from the original data through 1000 samplings is used to estimate the utility coefficients of the MIMIC-Logit model. Lastly, the survey data of passengers arriving in Xi'an between April and June 2021 is employed to validate the proposed model. Study results show that (1) the goodness of fit and hit ratio of the MIMIC-Logit model with latent variables is 43.621% and 83.312%, respectively, which are higher than the comparative multinomial-Logit model and the random coefficient Logit model; (2) the preferences of passengers towards different travel modes of travel expenses, travel time, and travel distance are heterogeneous, and the characteristics of travel modes, socio-economic attributes, and latent variables all have a significant impact on mode choices; (3) when the variables representing perceived level of safety of the COVID-19 prevention measures and epidemic prevention strategies is increased by 100%, the probability of choosing civil aviation is increased by 23.207% and 21.349%, respectively; (4) when the variable representing travel experience is increased by 100%, the probability of passengers choosing high-speed rail is increased by 18.229%. In general, the proposed method reveals that the latent variables representing passenger's psychology has a significant impact on mode choice behavior, and the probability of choosing high-speed rail and civil aviation can be increased by improving the perceived level of safety of prevention measures, epidemic prevention strategies, and riding experience. -
表 1 潜变量与其指标观测变量的对应关系
Table 1. The relationship between latent variables and their indicators
潜变量 变量代码 指标观测变量 感知防疫安全程度 PS 我认为该方式的防疫服务水平是安全的
我认为该方式能提供有效的防疫保障措施
我认为乘坐该方式不增加疫情防控的难度防疫策略 S 我认为该方式的消杀通风程度很好
我认为该方式能保持旅客间的安全距离
我认为该方式的防疫宣传很好乘车体验 TE 我认为该方式的内部环境很好
我认为该方式的座椅舒适
我认为该方式传播病毒的概率较低
我认为该方式的防疫设施完善出行习惯 H 即使出现疫情,该方式仍然是我的最优选择
疫情影响下,我更倾向于乘坐该方式
疫情爆发前,我乘坐该方式的频率很高表 2 显变量定义
Table 2. Definition of observable variables
类别 变量名称 变量代码 变量解释 出行特征 城市等级 CL 一线城市;二线城市;三线城市;四线城市 出行距离/km D 出发城市与到达城市之间的直线距离 出行费用/元 CO 城际出行总费用 出行时长/h T 0~2;>2~3;>3~4;>4~5;>5~6;>6 换乘次数 CH 无需换乘;1次换乘;超过1次换乘 出发时刻 DT 当日13:00之前;当日13:00之后 天气 W 晴天;多云;雨、雪、雾等 行李数 B 有无大件行李 同行人数/人 P 0;1;≥ 2 出行目的 PU 旅游;其他 社会经济属性 月收入/元 I 0~3 000;>3 000~6 000;>6 000~9 000;>9 000~12 000;>12 000 受教育程度 E 初中及以下;高中/中专;大专;本科;硕士及以上 职业 J 学生;国有企业;事业单位;公务员;民营企业;外资企业 年龄/岁 A 0~20;>20~26;>26~32;>32~39;>39~46;>46~53;>53 性别 G 男;女 小汽车拥有量 CA 是;否 表 3 MIMIC模型拟合度评价指标
Table 3. Fitness evaluation index of the MIMIC model
拟合度评价指标 MIMIC-P模型 MIMIC-H模型 MIMIC-T模型 MIMIC-C模型 推荐范围 实际值 实际值 实际值 实际值 CMIN/df 1.665 1.533 1.776 1.543 < 3.0 RMSEA 0.045 0.036 0.044 0.041 < 0.05 GFI 0.917 0.918 0.907 0.916 >0.90 CFI 0.975 0.976 0.957 0.976 >0.90 TLI 0.966 0.974 0.958 0.971 >0.90 注:MIMIC-P模型、MIMIC-H模型、MIMIC-T模型,以及MIMIC-C模型分别为民航、高铁、普铁以及自驾出行的MIMIC模型。 表 4 MIMIC模型的结构模型结果
Table 4. Results of the structure model
方式 潜变量 E J A G I CA 民航 PS 0.127 0.097 S 0.114 0.106 0.094 TE 0.108 0.131 H 0.151 -0.126 高铁 PS 0.134 0.094 S 0.131 0.120 0.108 TE 0.137 0.114 H 0.136 -0.154 普铁 PS 0.144 0.093 S 0.106 0.135 0.117 TE 0.103 0.127 H 0.121 -0.099 自驾 PS 0.114 0.095 S 0.154 0.098 0.108 TE 0.132 0.115 0.138 H 0.128 0.117 注:表中参数值均满足p < 0.1的显著性检验。 表 5 MNL模型与MIMIC-Logit模型的回归分析结果
Table 5. Regression analysis results of MNL model and MIMIC-Logit integrated model
变量 MNL模型 随机系数Logit模型 MIMIC-Logit模型 高铁 普铁 自驾 高铁 普铁 自驾 高铁 普铁 自驾 出行方式特征 CO -0.079*** -0.093* 0.041*** -0.096*** -0.046* 0.037*** -0.075*** -0.067** 0.043*** T -0.256** 0.647* -0.624* -0.156* 0.732* -0.557** D -0.017* 0.033** -0.074* -0.035* 0.030** -0.079* -0.013** 0.040** -0.061* DT -0.876* -1.403* -0.880* -1.432* -0.833* -1.275* W 0.705* -0.108* 0.776* -0.119* 0.376** -0.274* B 0.064* 0.332** 0.058* 0.339** 0.096** 0.338** P -0.196* 0.048** -0.198* 0.042** -0.142** 0.083* 社会经济属性 CA -0.224** -0.330** 1.486*** -0.236** -0.358** 1.320*** -0.245** -0.330** 1.375*** E -0.427** -0.641** -0.441** -0.627** -0.461** -0.602** A 0.457** 0.159* -0.267** 0.466** 0.143* -0.257** 0.448** 0.165* -0.264** G 0.132** 0.170** -0.162** 0.158** 0.186** -0.164** 0.180** 0.196** -0.142** I -0.664* -0.830** -0.770** -0.667* -0.833** -0.756** -0.643* -0.827** -0.763** 潜变量 PS -0.658** -0.440** -1.405*** S -0.426* -0.236** -0.649* TE -0.214* 0.089* -0.423** H -0.246* 1.442** 1.907* 常数项 CON -2.332** -1.661* -3.049** -2.368** -1.627* -3.421** -1.033** 0.356** -1.744*** 对数似然估计值 -808.232 -787.306 -729.513 拟合优度比/% 34.713 36.422 43.621 命中率/% 77.89 79.83 83.31 注:*,**,***表示显著性水平为1%,5%,10%;随机系数Logit模型与MIMIC-Logit模型中,CO,T,D的参数结果为其服从正态分布的均值。 表 6 需求弹性估计值
Table 6. Demand elasticity estimates
出行方式 CO D PS S TE 民航 0.140 -0.124 -0.233 -0.208 -0.048 高铁 -0.123 -0.115 -0.091 -0.139 -0.176 普铁 -0.158 -0.076 -0.154 -0.057 -0.033 自驾 0.059 -0.118 -0.172 -0.174 -0.080 -
[1] 交通运输部. 2020年交通运输行业发展统计公报[J]. 交通财会, 2021(6): 92-97. doi: 10.3969/j.issn.1005-9016.2021.06.025Ministry of Transport. Statistics of transportation industry in 2020[J]. Finance & Accounting for Transport, 2021(6): 92-97. (in Chinese) doi: 10.3969/j.issn.1005-9016.2021.06.025 [2] 叶玉玲, 韩明初, 陈俊晶. 基于出行链的城际旅客出行方式选择行为[J]. 同济大学学报(自然科学版), 2018, 46(9): 1234-1240.YE Y L, HAN M C, CHEN J J. Intercity passenger travel mode choice behavior based on trip chain[J]. Journal of Tongji University(Natural Science), 2018, 46(9): 1234-1240. (in Chinese) [3] 滕靖, 薛晖. 考虑出行者异质性的城际出行选择行为研究[J]. 铁道运输与经济, 2020, 42(增刊1): 60-66, 80. doi: 10.16668/j.cnki.issn.1003-1421.2020.13.10TENG J, XUE H. A study on intercity travel choice behavior based on traveler heterogeneity[J]. Railway Transport and Economy, 2020, 42(S1): 60-66, 80. (in Chinese) doi: 10.16668/j.cnki.issn.1003-1421.2020.13.10 [4] LI X W, TANG J Q, HU X J, et al. Assessing intercity multimodal choice behavior in a touristy city: A factor analysis[J]. Journal of Transport Geography, 2020, 86: 102776. doi: 10.1016/j.jtrangeo.2020.102776 [5] 景鹏, 隽志才, 查奇芬. 扩展计划行为理论框架下基于MIMIC模型的城际出行行为分析[J]. 管理工程学报, 2016, 30(4): 61-68. doi: 10.13587/j.cnki.jieem.2016.04.008JING P, JUAN Z C, ZHA Q F. Application of the expanded theory of planned behavior in intercity travel behavior based on MIMIC model[J]. Journal of Industrial Engineering and Engineering Management, 2016, 30(4): 61-68. (in Chinese) doi: 10.13587/j.cnki.jieem.2016.04.008 [6] BORHAN M N, IBRAHIM A N H, MISKEEN M A. A. Extending the theory of planned behaviour to predict the intention to take the new HSR for intercity travel in Libya: Assessment of the influence of novelty seeking, trust and external influence[J]. Transportation Research Part A: Policy and Practice, 2019, 130: 373-384. doi: 10.1016/j.tra.2019.09.058 [7] ZHAO P J, GAO Y K. Public transit travel choice in the post COVID-19 pandemic era: An application of the extended theory of planned behavior[J]. Travel Behaviour and Society, 2022, 28: 181-195. doi: 10.1016/j.tbs.2022.04.002 [8] CHEN C, FENG T, GU X N. Role of latent factors and public policies in travel decisions under COVID-19 pandemic: Findings of a hybrid choice model[J]. Sustainable Cities and Society, 2022, 78: 103601. doi: 10.1016/j.scs.2021.103601 [9] 刘建荣, 郝小妮, 石文瀚. 新冠疫情对老年人公交出行行为的影响[J]. 交通运输系统工程与信息, 2020, 20(6): 71-76, 98.LIU J R, HAO X N, SHI W H. Impact of COVID-19 on the elderly's bus travel behavior[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20 (6): 71-76, 98. (in Chinese) [10] 石京, 龙昱茜. 新冠疫情对居民休闲出行影响研究[J]. 中国公路学报, 2022, 35(1): 238-251. doi: 10.3969/j.issn.1001-7372.2022.01.021SHI J, LONG Y X. Research on the impacts of the COVID-19 on individual's leisure travel[J]. China Journal of Highway and Transport, 2022, 35(1): 238-251. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.01.021 [11] LUAN S L, YANG Q F, JIANG Z T, et al. Exploring the impact of COVID-19 on individual's travel mode choice in China[J]. Transport Policy, 2021, 106: 271-280. doi: 10.1016/j.tranpol.2021.04.011 [12] 张小雨, 邵春福, 王博彬, 等. 新冠疫情影响下居民共享出行方式选择行为研究[J]. 交通运输系统工程与信息, 2022, 22(2): 186-196, 205. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202202018.htmZHANG XY, SHAO C F, WANG B B, et al. Travel mode choice analysis with shared mobility in context of COVID-19[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(2): 186-196, 205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202202018.htm [13] 骆晨, 董青, 姚擎, 等. 突发公共卫生事件持续期居民中长距离出行方式选择行为研究[J]. 交通运输系统工程与信息, 2020, 20(6): 57-62.LUO C, DONG Q, YAO Q, et al. Behavior of long-distance travel mode choice under the duration of public health emergencies[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(6): 57-62. (in Chinese) [14] 李涛, 李宇, 戴靓, 等. COVID-19疫情影响下的"五一" 小长假城际出行特征与影响因素[J]. 地理研究, 2021, 40 (11): 3225-3241. doi: 10.11821/dlyj020201279LI T, LI Y, DAI L, et al. Characteristics and influencing factors of intercity travel during the May Day holiday under the influence of the COVID-19 outbreak in China[J]. Geographical Research, 2021, 40(11): 3225-3241. (in Chinese) doi: 10.11821/dlyj020201279 [15] 孙连娇, 戢晓峰, 陈方. 欠发达地区中长距离出行方式选择行为机理研究[J]. 公路交通科技, 2019, 36(1): 131-137. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201901018.htmSUN L J, JI X F, CHEN F. Study on travel mode choice mechanism of middle and long distance in underdeveloped areas[J]. Journal of Highway and Transportation Research and Development, 2019, 36(1): 131-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201901018.htm [16] 刘志伟, 宋正沄, 邓卫, 等. 无人驾驶汽车对中短距离市际出行方式选择行为的影响[J]. 交通信息与安全, 2022, 40(2): 91-97. doi: 10.3963/j.jssn.1674-4861.2022.02.011LIU Z W, SONG Z Y, DENG W, et al. Impacts of autonomous vehicles on mode choice behavior in the context of short-medium distance intercity travel[J]. Journal of Transport Information and Safety, 2022, 40(2): 91-97. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.02.011 [17] 张昕明, 弓棣, 谢秉磊, 等. 计划行为理论视角下基于出行行为的公交防疫策略影响效果研究[J]. 交通信息与安全, 2021, 39(6): 117-125. doi: 10.3963/j.jssn.1674-4861.2021.06.014ZHANG X M, GONG D, XIE B L, et al. A study of the effectiveness of epidemic prevention policies on public transit usage based on the theory of planned behaviors[J]. Journal of Transport Information and Safety, 2021, 39(6): 117-125. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.06.014 [18] 原雅丽, 杨小宝, 李虹慧, 等. 突发事件下城市群内旅客城际出行方式选择行为[J]. 清华大学学报(自然科学版), 2022, 62(7): 1142-1150. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202207005.htmYUAN Y L, YANG X B, LI H H, et al. Intercity travel mode choice behavior of travelers in large urban regions during emergencies[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(7): 1142-1150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202207005.htm [19] NETO I L, MATSUNAGA L H, MACHADO C C, et al. Psychological determinants of walking in a Brazilian sample: An application of the theory of planned behavior[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 73: 391-398. [20] SCHNEIDERF, ENSTEDH. Shadow economies: Size, causes, and consequences[J]. Journal of Economic Literature, 2000, 38(1): 77-114. [21] BEN-AKIVA M, WALKER J, BERNARDINO A T, et al. Integration of choice and latent variable models[J]. Perpetual Motion: Travel Behaviour Research Opportunities and Application Challenges, 2002(1): 431-470. [22] RAMEZANI S, LAATIKAINEN T, HASANZADEH K, et al. Shopping trip mode choice of older adults: An application of activity space and hybrid choice models in understanding the effects of built environment and personal goals[J]. Transportation, 2021, 48(2): 505-536. [23] PRASETYO Y T, CASTILLO A M, SALONGA L J, et al. Factors affecting perceived effectiveness of COVID-19 prevention measures among Filipinos during enhanced community quarantine in Luzon, Philippines: Integrating protection motivation theory and extended theory of planned behavior[J]. International Journal of Infectious Diseases, 2020, 99: 312-323. [24] 陈坚, 傅志妍, 钟异莹. 心理因素影响的公交方式选择行为模型[J]. 交通运输系统工程与信息, 2017, 17(3): 120-126, 142.CHEN J, FU Z Y, ZHONG Y Y. Choice behavior model of urban public transport considered the psychological factors affecting[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(3): 120-126, 142. (in Chinese) [25] NICOLA M, O'NEILL N, SOHRABI C, et al. Evidence based management guideline for the COVID-19 pandemic-Review article[J]. International Journal of Surgery, 2020, 77: 206-216. [26] LI X, XU S, YU M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan[J]. Journal of Allergy and Clinical Immunology, 2020, 146(1): 110-118. [27] GUO Y Y, ZHOU J B, WU Y, et al. Identifying the factors affecting bike-sharing usage and degree of satisfaction in Ningbo, China[J]. PLOS ONE, 2017, 12(9): e0185100. [28] 陈月霞, 陈龙, 查奇芬, 等. 基于低碳心理潜变量Logit模型的出行方式预测模型[J]. 公路交通科技, 2017, 34(9): 100-108, 137. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201709015.htmCHEN Y X, CHEN L, ZHA Q F, et al. A travel mode forecasting model based on low-carbon psychological latent variable logit model[J]. Journal of Highway and Transportation Research and Development, 2017, 34(9): 100-108, 137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201709015.htm