留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交汇水域船舶轨迹预测与航行意图识别

王知昊 元海文 李维娜 肖长诗

王知昊, 元海文, 李维娜, 肖长诗. 交汇水域船舶轨迹预测与航行意图识别[J]. 交通信息与安全, 2022, 40(4): 101-109. doi: 10.3963/j.jssn.1674-4861.2022.04.011
引用本文: 王知昊, 元海文, 李维娜, 肖长诗. 交汇水域船舶轨迹预测与航行意图识别[J]. 交通信息与安全, 2022, 40(4): 101-109. doi: 10.3963/j.jssn.1674-4861.2022.04.011
WANG Zhihao, YUAN Haiwen, LI Weina, XIAO Changshi. Trajectory Prediction and Intention Identification of Ships in Confluence Waters[J]. Journal of Transport Information and Safety, 2022, 40(4): 101-109. doi: 10.3963/j.jssn.1674-4861.2022.04.011
Citation: WANG Zhihao, YUAN Haiwen, LI Weina, XIAO Changshi. Trajectory Prediction and Intention Identification of Ships in Confluence Waters[J]. Journal of Transport Information and Safety, 2022, 40(4): 101-109. doi: 10.3963/j.jssn.1674-4861.2022.04.011

交汇水域船舶轨迹预测与航行意图识别

doi: 10.3963/j.jssn.1674-4861.2022.04.011
基金项目: 

国家自然科学基金项目 52001235

中国博士后科学基金项目 2020M682504

详细信息
    作者简介:

    王知昊(1997—),硕士研究生. 研究方向:海事安全、信息导航. E-mail: 21903010049@stu.wit.edu.cn

    通讯作者:

    元海文(1988—),博士,副教授. 研究方向:交通信息工程及控制、信息导航与海事安全保障. E-mail: hw_yuan@whut.edu.cn

  • 中图分类号: U675.79

Trajectory Prediction and Intention Identification of Ships in Confluence Waters

  • 摘要: 针对典型水上交通场景交汇水域,研究了1种数据驱动的船舶轨迹预测与航行意图识别方法。设计CNN+LSTM组合神经网络,通过学习交汇水域船舶的历史轨迹,以CNN+LSTM网络为编码器提取其通航环境及船舶航行时空特征,LSTM与全连接层为解码器同步输出未来时段内船舶轨迹序列和航路选择,从而形成船舶轨迹与航行意图识别模型。同时,引入Dropout网络结构描述该模型的预测不确定性,采用随机关闭CNN+ LSTM核心网络部分神经单元的方式,以相同轨迹序列作为输入获取多组相近的预测结果,根据其统计均值与方差对船舶轨迹预测的不确定性进行量化。以美国沿海某交汇水域公开AIS数据为对象开展实验,创建了该交汇水域船舶航行轨迹数据集,以输入时长60 min,采样频率3 min作为输入条件,Dropout值取0.5,实验结果表明:所提方法对未来60 min时段内的轨迹预测误差为3.946 n mile,航行意图识别准确率达87%,不确定性估计覆盖率达85.7%。与LSTM预测方法相比,当船舶操纵性发生改变时,所提CNN+LSTM模型的轨迹预测误差降低了31.6%,而且兼具船舶航行意图识别及预测不确定性估计能力,有利于智能航行与海事监管技术发展。

     

  • 图  1  交汇水域船舶航行轨迹

    Figure  1.  Shiptrajectories in confluence waters

    图  2  基于CNN+LSTM组合网络的船舶轨迹预测与航行意图识别模型

    Figure  2.  Ship trajectory prediction and intention recognition model based on CNN+LSTM combined network

    图  3  船舶轨迹预测与航行意图识别方法流程

    Figure  3.  Theflow of the ship trajectory prediction and intention recognition method

    图  4  以前60 min时长为输入,预测未来60 min时段内的船舶轨迹

    Figure  4.  Predicting the ship trajectories of next 60 min with the input of previous 60 min

    图  5  LSTM+CNN、LSTM、运动预测方法对比

    Figure  5.  Comparison between LSTM+CNN、LSTM、motion-based predictions

    图  6  船舶轨迹预测不确定性估计(Dropout = 0.5)

    Figure  6.  Uncertainty estimation of ship trajectory prediction(Dropout = 0.5)

    表  1  不同采样频率输入条件下的轨迹预测误差

    Table  1.   Trajectory prediction errors using different sampling frequenciesas inputs

    采样频率/min t1时刻误差/n mile t2时刻误差/n mile t3时刻误差/n mile t4时刻误差/n mile t5时刻误差/n mile 预测误差/n mile
    1 0.463 1 0.759 8 1.129 3 1.595 3 2.196 5 6.640 5
    3 0.262 0 0.453 6 0.669 7 0.918 2 1.208 8 3.946 0
    6 0.539 7 0.863 3 1.232 9 1.604 7 2.244 3 7.034 0
    12 0.813 5 1.107 3 1.412 0 2.187 5 2.937 0 8.560 0
    下载: 导出CSV

    表  2  不同时长输入条件下的轨迹预测误差

    Table  2.   Trajectory prediction errors using different durations as inputs

    输入时长/min t1时刻误差/n mile t2时刻误差/n mile t3时刻误差/n mile t4时刻误差/n mile t5时刻误差/n mile 预测误差/n mile
    15 1.105 2 1.576 8 2.228 4 3.258 1 4.539 6 15.534
    30 0.813 6 1.328 4 1.933 2 2.638 8 3.481 2 12.978
    45 0.565 2 0.878 4 1.326 7 1.976 4 2.746 8 8.946
    60 0.262 0 0.453 6 0.669 7 0.918 2 1.208 8 3.946
    下载: 导出CSV

    表  3  交汇水域船舶航行意图识别混淆矩阵

    Table  3.   Confusion matrix of intention identification for ships in confluence waters

    实际 预测 总计
    直线航行 右转航行
    直线航行 49 8 57
    右转航行 5 38 43
    总计 54 36 100
    下载: 导出CSV

    表  4  不同Dropout值条件下的轨迹预测不确定性估计及覆盖率

    Table  4.   Uncertaintyestimation and coverage rate of trajectory prediction with different Dropout values

    Dropout t1时刻范围/n mile2 t2时刻范围/n mile2 t3时刻范围/n mile2 t4时刻范围/n mile2 t5时刻范围/n mile2 不确定性范围/n mile2 覆盖率/%
    0.3 0.390 4 0.5981 0.954 5 1.595 5 2.923 7 1.292 4 75.4
    0.4 0.598 8 0.809 9 1.430 2 3.203 9 4.632 8 2.755 1 80.1
    0.5 0.965 1 1.449 7 2.351 3 4.027 6 7.408 8 3.940 5 85.7
    0.6 1.800 1 2.517 7 3.633 0 6.205 9 9.390 3 5.069 4 79.6
    0.7 2.300 4 3.322 3 4.878 9 7.029 5 10.762 3 6.658 7 71.7
    下载: 导出CSV
  • [1] 严新平, 褚端峰, 刘佳仑, 等. 智能交通发展的现状、挑战与展望[J]. 交通运输研究, 2021, 7(6): 2-10+22. https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH202106001.htm

    YAN X P, CHU D F, LIU J L, et al. Current situation, challenge and prospect of intelligent transportation development[J]. Transportation Research, 2021, 7(6): 2-10+22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH202106001.htm
    [2] 严新平, 李晨, 刘佳仑, 等. 新一代航运系统体系架构与关键技术研究[J]. 交通运输系统工程与信息, 2021, 21(5): 22-29+76. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202105004.htm

    YAN X P, LI C, LIU J L, et al. Research on architecture and key technologies of new generation shipping system[J]. Transportation System Engineering and Information, 2021, 21(5): 22-29+76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202105004.htm
    [3] 马吉林, 谢朔. 船舶智能航行及关键技术最新发展[J]. 中国船检, 2020(11): 52-58. doi: 10.3969/j.issn.1009-2005.2020.11.024

    MA J L, XIE S. The latest development of ship intelligent navigation and key technology[J]. China Ship Inspection, 2020(11): 52-58. (in Chinese) doi: 10.3969/j.issn.1009-2005.2020.11.024
    [4] 张笛, 赵银祥, 崔一帆, 等. 智能船舶的研究现状可视化分析与发展趋势[J]. 交通信息与安全, 2021, 39(1): 7-16+34. doi: 10.3963/j.jssn.1674-4861.2021.01.002

    ZHANG D, ZHAO Y X, CUI Y F, et al. A visualization analysis and development trend of intelligent ship studies[J]. Journal of Transport Information and Safety, 2021, 39(1): 7-16+34. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.01.002
    [5] 吴文祥, 初秀民, 柳晨光, 等. 基于模型预测控制的船舶纵向航速协同控制方法[J]. 交通信息与安全, 2021, 39(1): 52-63. doi: 10.3963/j.jssn.1674-4861.2021.01.0007

    WU W X, CHU X M, LIU C G, et al. A coordinated control method of longitudinal ship speed based on model predictive control[J]. Journal of Transport Information and Safety, 2021, 39(1): 52-63. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.01.0007
    [6] 赵帅兵, 唐诚, 梁山, 等. 基于改进卡尔曼滤波的控制河段船舶航迹预测[J]. 计算机应用, 2012, 32(11): 3247-3250. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201211074.htm

    ZHAO S B, TANG C, LIANG S, et al. Ship track prediction in controlled reach based on improved Kalman filter[J]. Computer Applications, 2012, 32(11): 3247-3250. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201211074.htm
    [7] 徐铁, 蔡奉君, 胡勤友, 等. 基于卡尔曼滤波算法船舶AIS轨迹估计研究[J]. 现代电子技术, 2014, 37(5): 97-100+104. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ201405030.htm

    XU T, CAI F J, HU Q Y, et al. Research on ship AIS trajectory estimation based on Kalman filter algorithm[J]. Modern Electronic Technology, 2014, 37(5): 97-100+104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ201405030.htm
    [8] 姜佰辰, 关键, 周伟, 等. 基于多项式卡尔曼滤波的船舶轨迹预测算法[J]. 信号处理, 2019, 35(5): 741-746. https://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201905002.htm

    JIANG B C, GUAN J, ZHOU W, et al. Ship trajectory prediction algorithm based on polynomial Kalman filter[J]. Signal Processing, 2019, 35(5): 741-746. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201905002.htm
    [9] WIEST J, HOFFKEN M, KRESEL U, et al. Probabilistic trajectory prediction with Gaussianmixture models[C]. 4th Intelligent Vehicles Symposium, Madrid, Spain: IEEE, 2012.
    [10] 乔少杰, 金琨, 韩楠, 等. 1种基于高斯混合模型的轨迹预测算法[J]. 软件学报, 2015, 26(5): 1048-1063.

    QIAO S J, JIN K, HAN N, et al. A trajectory prediction algorithm based on Gaussian mixture model[J]. Journal of Software, 2015, 26(5): 1048-1063. (in Chinese)
    [11] WANG Q Y, ZHANG Z L, WANG Z Y, et al. The trajectory prediction of spacecraft by grey method[J]. Measurement Science and Technology, 2016, 27(8): 085011. http://smartsearch.nstl.gov.cn/paper_detail.html?id=11f0aa2e92ca28cd884174c657e79ecc
    [12] 周艳萍, 曾宪群, 蔡玲. 改进灰色模型的船舶航行轨迹自动预测研究[J]. 舰船科学技术, 2021, 43(20): 34-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX202120013.htm

    ZHOU Y P, ZENG X Q, CAI L. Research on automatic prediction of ship navigation trajectory based on improved grey model[J]. Ship Science and Technology, 2021, 43(20): 34-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX202120013.htm
    [13] 李万高, 赵雪梅, 孙德厂. 基于改进贝叶斯方法的轨迹预测算法研究[J]. 计算机应用, 2013, 33(7): 1960-1963. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201307044.htm

    LI W G, ZHAO X M, SUN D C. Research on trajectory prediction algorithm based on improved Bayesian method[J]. Computer Applications, 2013, 33(7): 1960-1963. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201307044.htm
    [14] RONG H, TEIXEIRA A P, SOARES C G. Ship trajectory uncertainty prediction based on a Gaussian process model[J]. Ocean Engineering, 2019, 182(15): 499-511. http://www.sciencedirect.com/science/article/pii/S0029801818315427
    [15] ZHOU H, CHEN Y J, ZHANG S M. Ship trajectory prediction based on BP neural network[J]. Journal on Artificial Intelligence, 2019, 1(1): 29-36.
    [16] 甄荣, 金永兴, 胡勤友, 等. 基于AIS信息和BP神经网络的船舶航行行为预测[J]. 中国航海, 2017, 40(2): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201702002.htm

    ZHEN R, JIN Y X, HU Q Y, et al. Prediction of ship navigation behavior based on AIS information and BP neural network[J]. China Navigation, 2017, 40(2): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201702002.htm
    [17] SUO Y F, CHEN W K, CLAMARAMUNT C, et al. A ship trajectory prediction framework based on a recurrent neural network[J]. Sensors, 2020, 20(18): 5133. http://www.xueshufan.com/publication/3084233918
    [18] 权波, 杨博辰, 胡可奇, 等. 基于LSTM的船舶航迹预测模型[J]. 计算机科学, 2018, 45(增刊2): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2018S2023.htm

    QUAN B, YANG B C, HU K Q, et al. Ship track prediction model based on LSTM[J]. Computer Science, 2018, 45(S2): 126-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2018S2023.htm
    [19] PARK J, JEONG J, PARK Y. Ship trajectory prediction based on Bi-LSTM using spectral-clustered AIS data[J]. Journal of Marine Science and Engineering, 2021, 9(9): 1037. http://agris.fao.org/agris-search/search.do?recordID=CH2022112449
    [20] GAO D W, ZHU Y S, ZHANG J F, et al. A novel MP-LSTM method for ship trajectory prediction based on AIS data[J]. Ocean Engineering, 2021(228): 108956. http://www.sciencedirect.com/science/article/pii/S0029801821003917
    [21] 季学武, 费聪, 何祥坤, 等. 基于LSTM网络的驾驶意图识别及车辆轨迹预测[J]. 中国公路学报, 2019, 32(6): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906004.htm

    JI X W, FEI C, HE X K, et al. Driving intention recognition and vehicle trajectory prediction based on LSTM network[J]. Chinese Journal of Highway, 2019, 32(6): 34-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906004.htm
    [22] 刘姗姗, 马社祥, 孟鑫, 等. 基于CNN和Bi-LSTM的船舶航迹预测[J]. 重庆理工大学学报(自然科学), 2020, 34(12): 196-205. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202012025.htm

    LIU S S, MA D X, MENG X, et al. Prediction model of ship trajectory based on CNN and Bi-LSTM[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(12): 196-205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202012025.htm
    [23] LIU X, YUAN H W, XIAO C S, et al. Hybrid-driven vessel trajectory prediction based on uncertainty fusion[J]. Ocean Engineering, 2022(248): 110836. http://arxiv.org/abs/2201.07606
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  1166
  • HTML全文浏览量:  532
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-24
  • 网络出版日期:  2022-09-17

目录

    /

    返回文章
    返回