A Model of Gate Allocation for Parallel Multi-runway Hybrid Operation from the Perspective of Fuel-saving and Carbon Emission Reduction
-
摘要:
针对因隔离平行运行模式与不合理跑道机位使用方案引起的航空器场面滑行排放过高的停机位分配问题,在传统停机位分配模型基础上,研究了多跑道运行模式对停机位分配方案的影响,基于空管机场2方协同运行与就近起降运行模式,研究了面向平行多跑道混合运行的停机位分配模型。通过引入航空器空中走向约束与航班接续约束,以减少采用航班横跨场面运行这个过长滑行距离的停机位分配方案。在此基础上,考虑不同机型发动机燃油流率对分配方案燃油消耗及碳排放的影响,以最小化燃油消耗为目标建立整数规划数学模型,并结合天津机场典型时段运行数据进行仿真验证。仿真结果表明:与原计划运行结果相比,优化策略的滑行距离与碳排放分别减少了11.9% 和13.3%,说明通过优化多跑道运行机场的停机位跑道使用方案可有效减少滑行距离与油耗,达到节油减排的目的。
Abstract:The work aims to solve the problems of gate allocation caused by segregated and parallel operation mode and unreasonable runway-stand usage plan, and the high taxiing emissions of aircraft surface. A traditional model of gate allocation is used to study the influence of the multi-runway operation mode on a stand allocation plan. Based on cooperative operation between air traffic control and airport control center, as well as nearby take-off and landing operation mode, the work proposes a gate allocation model oriented to parallel multi-runway mixed operation. Introducing aircraft flight direction constraints and flight continuity constraints can reduce the use of gate allocation schemes—flights run across the airport's surface, which is an excessively long taxiing distance. The study takes the account the impacts of different engine fuel-flow rates on fuel consumption and carbon emissions of the allocation plan, so the an integer programming mathematical model is established to minimize fuel consumption, and the simulation verification is carried out based on the operation data of Tianjin Airport in typical periods. The results show that taxiing distance and carbon emissions of the optimized strategy are reduced by 11.9% and 13.3%, respectively, compared with the originally planned operation results. The taxiing distance and fuel consumption can be reduced by optimizing the use of stands at airports with multiple runways to achieve fuel-saving and emission reduction.
-
表 1 航班运行数据
Table 1. Flight service data
序号 航班号 机型 进场时刻 离场时刻 停机位 进场跑道 进场走向 离场跑道 离场走向 1 GS6658 E190 09:05 10:45 203 34R 东 34L 西 2 3U8567 A320 09:15 10:25 230 34R 东 34L 西 3 9C8813 A320 09:15 10:30 211 34L 西 34L 西 4 CA4187 A321 09:30 10:30 205 34L 西 34L 西 5 EU2775 A320 09:35 10:35 223 34L 西 34L 西 6 MF8175 B738 09:40 10:50 229 34R 西 34L 西 7 AQ1055 B738 09:45 11:05 218 34L 西 34L 西 8 OZ327 A321 09:55 10:55 104 34L 东 34L 东 9 GS7906 A330 09:55 11:20 220 34L 西 34L 西 10 BK2787 B739ER 10:00 13:15 106 34R 西 34L 东 11 MF8125 B738 10:10 13:30 201 34R 西 34L 东 12 GS7581 E190 10:15 11:35 202 34L 西 34L 西 13 GS7958 A332 10:20 17:40 212 34L 西 34L 西 14 FU6743 B738 10:30 11:35 206 34R 西 34L 西 15 FM9147 B737 10:30 11:35 224 34R 西 34L 西 16 CA1678 B738 10:35 11:40 209 34R 东 34L 西 17 SC4801 B738 10:40 11:40 118 34R 西 34L 西 18 MF8209 B738 10:40 11:45 225 34R 东 34L 西 19 ZH9121 B738 10:40 11:45 207 34R 西 34L 西 20 RY8961 B738 10:45 11:45 226 34L 西 34L 西 21 G52866 A320 10:55 12:00 213 34R 西 34L 西 22 3U8810 A321 10:55 15:30 208 34L 西 34L 西 表 2 慢车状态下发动机燃油流率
Table 2. The fuel flow rate of the engine in slow mode
机型 发动机数量Ni 发动机型号 燃油流率
fi/(kg/s)E190 2 CF34-10E 0.085 B737-700 2 CFM56-3C-1 0.124 B737-800 2 CFM56-7B24/2 0.109 B737-900ER 2 CFM56-7B27 0.116 A320 2 CFM56-5A3 0.104 4 A321 2 V2530-A5 0.138 A330 2 CF6-80C2B4 0.199 A332 2 CF6-80E1A2 0.228 表 3 各停机位与跑道组合对的滑行距离
Table 3. Taxi distance of each stand and runway combination pair
m 停机位 进离场选用跑道 停机位 进离场选用跑道 34L降
34L起34L降
34R起34R降
34L起34R降
34R起34L降
34L起34L降
34R起34R降
34L起34R降
34R起104 357 8 498 7 608 4 749 2 211 433 6 628 1 486 7 681 2 106 369 8 494 2 604 2 728 7 212 425 9 505 6 478 6 558 4 110 440 0 634 8 539 5 734 2 213 469 8 490 0 522 8 543 1 114 472 3 666 7 525 9 720 3 215 450 9 471 1 503 9 524 2 118 511 2 705 6 564 2 758 7 218 516 4 473 9 569 2 526 7 201 505 6 700 1 558 7 753 1 220 640 1 597 5 382 0 339 5 202 500 3 694 8 553 4 747 8 223 702 3 680 6 444 2 422 5 203 497 0 691 4 550 0 744 5 224 700 1 657 6 441 7 399 2 205 480 6 675 1 533 7 728 1 225 698 4 656 2 440 3 398 1 206 474 5 668 9 527 5 722 0 226 698 9 656 4 440 6 398 1 207 468 1 662 6 521 2 715 6 229 709 5 667 0 451 7 409 2 208 464 8 659 2 517 8 712 3 230 710 6 668 1 452 5 410 0 209 459 8 654 2 512 8 707 3 表 4 滑行距离及燃油对比
Table 4. Comparison of taxiing distance and fuel
航班 初始方案 初始距离/m 初始燃油/kg 优化方案 优化后距离/m 优化后燃油/kg 1 34R-203-34L 5 500 60.6 34R-225-34L 4 403 56.3 2 34R-230-34L 4 525 61.2 34R-220-34L 3 820 67.7 3 34L-211-34L 4 336 58.7 34L-201-34L 5 056 65.0 4 34L-205-34L 4 806 85.9 34L-209-34L 4 598 82.2 5 34L-223-34L 7 023 95.0 34L-212-34L 4 259 67.2 6 34R-229-34L 4 517 63.8 34R-226-34L 4 406 63.9 7 34L-218-34L 5 164 72.9 34L-202-34L 5 003 63.7 8 34R-104-34L 6 084 108.8 34L-106-34R 4 942 88.4 9 34L-220-34L 6 401 165.1 34L-205-34L 4 806 109.8 10 34R-106-34L 6 042 90.8 34L-104-34R 4 987 75.0 11 34R-201-34L 5 587 78.9 34R-229-34R 4 092 56.2 12 34R-202-34L 5 534 61.0 34L-213-34L 4 698 55.7 13 34R-212-34L 4 786 141.4 34L-215-34L 4 509 112.9 14 34R-206-34L 5 275 74.5 34R-224-34L 4 417 62.7 15 34R-224-34L 4 417 71.0 34R-223-34L 4 442 70.8 16 34R-209-34L 5 128 72.4 34L-203-34L 4 970 67.0 17 34R-118-34L 5 642 79.7 34L-206-34L 4 745 66.1 18 34R-225-34L 4 403 62.2 34R-230-34L 4 525 63.8 19 34R-207-34L 5 212 73.6 34L-208-34L 4 648 65.6 20 34R-226-34L 4 406 62.2 34L-118-34L 5 112 62.4 21 34R-213-34L 5 228 70.7 34L-207-34L 4 681 63.6 22 34R-208-34L 5 178 92.6 34L-211-34L 4 336 77.6 合计 115 194 1 803.2 101 453 1 563.6 表 5 2类模型仿真结果对比表
Table 5. Comparison of simulation results of two types of models
评估项 基于滑行距离的模型 基于燃油消耗的模型 总滑行距离/m 101 452 101 452 平均滑行距离/m 4 611 4 611 总滑行油耗/kg 1 583.2 1 563.6 平均滑行油耗/kg 72.0 71.1 -
[1] Air Transport Action Group. Facts & Figures[R/OL]. (2020-09) [2021-03-01]https://www.atag.org/facts-figures.html. [2] International Civil Aviation Organization (ICAO)ICAO Environmental Report[R]. Montreal: International Civil Aviation Organization, 2019. (in Chinese) [3] FLEUTI E, MARAINI S. Taxi-emissions at Zurich airport[R]. Zurich : Department of Law and Environment, 2017. [4] DAS G S, GZARA F, STUTZLE T. A review on airport gate assignment problems: Single versus multi objective approaches[J]. Omega, 2020(92) : 102-146. [5] TANG Chinghui, WANG Weichung. Airport gate assignments for airline-specific gates[J]. Journal of Air Transport Manage ment, 2013(30): 10-16. http://www.onacademic.com/detail/journal_1000036037272110_4b2b.html [6] KIM S H, FERON E, CLARKE J-P. Gate assignment to minimize passenger transit time and aircraft taxi time[J]. Journal of Guidance, Control, and Dynamic, 2013, 36 (2) : 467-475. doi: 10.2514/1.57022 [7] DENG Wu, ZHAO Huimin, YANG Xinhua, et al. Study on an improved adaptive PSO algorithm for solving multi-objective gate assignment[J]. Applied Soft Computing, 2017(59)288-302. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S1568494617303472&originContentFamily=serial&_origin=article&_ts=1497158556&md5=62bbb4eb20ac416daa60d6b17b638021 [8] BAGAMANOVA M, MOTA M M. Reducing airport environmental footprint using a disruption-aware stand assignment approach[J] Transportation Research Part D: Transport and Environment, 2020(89) : 102634. http://www.sciencedirect.com/science/article/pii/S1361920920308191 [9] 卫东选. 基于运行安全的机场停机位分配问题研究[D]. 南京: 南京航空航天大学, 2010.WEI Dongxuan. Study on airport Gate assignment problem based-on operational safety[D]. Nanjing : Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese) [10] 冯稈, 胡明华, 赵征. 一种新的停机位分配优化模型[J]. 交通运输系统工稈与信息, 2012, 12(1): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201201021.htmFENG Cheng, HU Minghua, ZHAO Zheng. A new optimization model of airport gate assignment[J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12(1): 131-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201201021.htm [11] 马思思, 唐小卫. 基于机场滑行效率提升的停机位优化分配模型[J]. 武汉理工大学学报, 2018, 4(4) : 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201804005.htmMA Sisi, TANG Xiaowei. Gate assignment optimization on efficiency improvement of airport taxiing[J]. Journal of Wuhan University of Technology, 2018, 40(4) : 24-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201804005.htm [12] 姜雨, 胡志韬, 童楚, 等. 面向航班延误的停机位实时指派优化模型[J]. 交通运输系统工稈与信息, 2020, 20 (5): 185-190+217. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202005027.htmJIANG Yu, HU Zhitao, TONG Chu, et al. An optimization model for gate reassignment under flight delays[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(5): 185-190+217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202005027.htm [13] BENLIC U, BURKE E K, WOODWARD J R. Breakout local search for the multi-objective gate allocation problem[J]. Computers & Operations Research, 2017(78) : 80-93. http://storre.stir.ac.uk/bitstream/1893/24175/1/Benlic_etal_COR_2016.pdf [14] YU Chuhang, ZHANG Dong, LAU H Y K. An adaptive large neighborhood search heuristic for solving a robust gate assignment problem[J]. Expert Systems with Applications, 2017 (84): 143-154. http://www.sciencedirect.com/science/article/pii/S0957417417302993 [15] DELL' ORCO M, MARINELLI M, ALTIERI M G. Solving the gate assignment problem through the fuzzy bee colony optimization[J]. Transportation Research Part C: Emerging Technologies, 2017(80): 424-438. http://www.onacademic.com/detail/journal_1000039873430410_be57.html [16] 中国民用航空局. 平行跑道同时仪表运行管理规定: CCAR-98TM[S]. 北京: 中国民用航空局, 2004.Civil Aviation Administration of China. Regulations on the management of simultaneous instrument operation on parallel runways: CCAR-98TM[S]. Beijing: Civil Aviation Administration of China, 2004. (in Chinese) [17] 李冬. 面向节油减排的机场离场过稈排队网络建模与优化[D]. 天津: 中国民航大学, 2020.LI Dong. Modeling and optimization of queuing network in airport departure process for fuel saving and emission reduction[D]. Tianjin: Civil Avition University of China, 2020. (in Chinese) [18] International Civil Aviation Organization (ICAO). ICAO engine exhaust emissions databank[DB/OL]. (2019-05)[202103-01].https://www.easa.europa.eu/domains/environment/icaoaircraft-engine-emissions-databank.