留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模式识别与ST-MRF相结合的车辆检测方法

周君 包旭 高焱 李耘 姜晴

周君, 包旭, 高焱, 李耘, 姜晴. 基于模式识别与ST-MRF相结合的车辆检测方法[J]. 交通信息与安全, 2021, 39(2): 95-100, 108. doi: 10.3963/j.jssn.1674-4861.2021.02.012
引用本文: 周君, 包旭, 高焱, 李耘, 姜晴. 基于模式识别与ST-MRF相结合的车辆检测方法[J]. 交通信息与安全, 2021, 39(2): 95-100, 108. doi: 10.3963/j.jssn.1674-4861.2021.02.012
ZHOU Jun, BAO Xu, GAO Yan, LI Yun, JIANG Qing. A Vehicle Detecting Method Based on Pattern Recognition Combined with ST-MRF[J]. Journal of Transport Information and Safety, 2021, 39(2): 95-100, 108. doi: 10.3963/j.jssn.1674-4861.2021.02.012
Citation: ZHOU Jun, BAO Xu, GAO Yan, LI Yun, JIANG Qing. A Vehicle Detecting Method Based on Pattern Recognition Combined with ST-MRF[J]. Journal of Transport Information and Safety, 2021, 39(2): 95-100, 108. doi: 10.3963/j.jssn.1674-4861.2021.02.012

基于模式识别与ST-MRF相结合的车辆检测方法

doi: 10.3963/j.jssn.1674-4861.2021.02.012
基金项目: 

国家自然科学基金项目 51808248

江苏省高校自然科学重大项目 17KJA580001

详细信息
    通讯作者:

    周君(1980—),博士,副教授.研究方向:智能交通. E-mail: joujou1980@163.com

  • 中图分类号: U491.1+16

A Vehicle Detecting Method Based on Pattern Recognition Combined with ST-MRF

  • 摘要: 车辆检测技术的主要难点是在于解决车辆之间的遮挡,以及由于光照变化引起的车辆与其阴影之间的遮挡问题,这些问题将直接影响检测的精度。针对这个问题,在原ST-MRF方法上研究了基于模式识别与ST-MRF相结合的车辆检测方法。模式识别技术分割相互遮挡的2辆车之间的边界,并识别相互遮挡车辆的边缘间隙以及边界信息,模式识别结果反馈给ST-MRF算法,算法对相互遮挡车辆重新分配标号,优化处理并融合不完整的分割部分,确定单个车辆信息。路段车辆检测实验结果表明,在检测区域行驶的325辆车,用原始ST-MRF算法跟踪统计到的车辆数为258辆,成功率为79%,采用模式识别技术与ST-MRF相结合算法统计到车辆315辆,成功率为97%;交叉口车辆检测实验结果表明,该方法在机动车与非机动车混行,公交车与小汽车相互遮挡的交叉口场景下,能较准确地得到车辆检测结果。

     

  • 图  1  研究路线图

    Figure  1.  Flow for the study

    图  2  2车相互遮挡示意图

    Figure  2.  Mutual occlusion between vehicles

    图  3  间隙类型

    Figure  3.  Gap type

    图  4  图像扫描示意图

    Figure  4.  Image scanning

    图  5  边界数

    Figure  5.  Number of borders

    图  6  边缘间隔评估值

    Figure  6.  Border interval evaluation

    图  7  边缘

    Figure  7.  Border

    图  8  车辆检测结果

    Figure  8.  Vehicle detection results

    图  9  路段处2种算法车辆跟踪结果比较

    Figure  9.  Vehicle tracking results of two algorithms in the road section

    图  10  交叉口处2种算法车辆跟踪结果比较

    Figure  10.  Vehicle tracking results of two algorithms at the intersection

  • [1] GAO Fei, GE Yisu, LU Shufang, et al. Online vehicle detection at nighttime-based tail-light pairing with saliency detection in the multi-lane intersection[J]. IET Intelligent Transport Systems, 2019, 13(3): 515-522. doi: 10.1049/iet-its.2018.5197
    [2] ZHAO Huijing, WANG Chao, LIN Yuping, et al. On-road vehicle trajectory collection and scene-based lane change analysis: part I[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(1): 1-14. http://ieeexplore.ieee.org/document/7515360
    [3] 杨敏, 裴明涛, 王永杰, 等. 一种基于运动目标检测的视觉车辆跟踪方法[J]. 北京理工大学学报, 2014, 34(4): 370-375. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201404009.htm

    YANG Min, PEI Mingtao, WANG Yongjie, et al. Video-based vehicle tracking based on moving object detection[J]. Transactions of Beijing Institute of Technology, 2014, 34(4): 370-375. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201404009.htm
    [4] 袁俊. 基于角点SIFT特征匹配的车辆跟踪方法研究[D]. 杭州: 浙江理工大学, 2013.

    YUAN Jun. Study on a new vehicle tracking method based on SIFT features matchment of corners[D]. Hangzhou: Zhejiang Sci-Tech University, 2013. (in Chinese)
    [5] 刘阳, 王忠立, 蔡伯根, 等. 复杂环境基于多信息融合的车辆跟踪方法[J]. 交通运输系统工程与信息, 2015, 15(6): 74-81. doi: 10.3969/j.issn.1009-6744.2015.06.012

    LIU Yang, WANG Zhongli, CAI Baigen, et al. Multiple information fusion-based vehicle tracking in complex environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(6): 74-81. (in Chinese) doi: 10.3969/j.issn.1009-6744.2015.06.012
    [6] 王文龙, 李清泉. 基于蒙特卡罗算法的车辆跟踪方法[J]. 测绘学报, 2011, 40(2): 200-203. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201102013.htm

    WANG Wenlong, LI Qingquan. A vehicle tracking algorithm with Monte-Carlo method[J]. Acta Geodaeteca et Cartographica Sinica, 2011, 40(2): 200-203. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201102013.htm
    [7] WEN Longyin, CAI Zhaowei, LEI Zhen, et al. Robust online learned spatio-temporal context model for visual tracking[J]. IEEE Transactions on Image Processing, 2014, 23 (2): 785-796. doi: 10.1109/TIP.2013.2293430
    [8] 周君, 程琳. 基于ST-MRF的自适应车辆跟踪算法研究[J]. 交通运输系统工程与信息, 2013, 13(3): 65-70. doi: 10.3969/j.issn.1009-6744.2013.03.010

    ZHOU Jun, CHENG Lin. Adaptive vehicle tracking algorithm based on ST-MRF model[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13(3): 65-70. (in Chinese) doi: 10.3969/j.issn.1009-6744.2013.03.010
    [9] 周君, 程琳. 基于反向ST-MRF模型的车辆遮挡分割算法[J]. 公路交通科技, 2013, 30(4): 107-111. doi: 10.3969/j.issn.1002-0268.2013.04.019

    ZHOU Jun, CHENG Lin. A segmentation algorithm of vehicle occlusion based on reversed ST-MRF model[J]. Journal of Highway and Transportation Research and Development. 2013, 30(4): 107-111. (in Chinese) doi: 10.3969/j.issn.1002-0268.2013.04.019
    [10] 周君, 高尚兵, 包旭, 等. 基于ST-MRF模型的电动自行车与汽车交通冲突检测方法: 201611030277.4[P]. 2019-01-22.

    ZHOU Jun, GAO Shangbing, BAO Xu, et al. Traffic conflict detection based on vehicle trajectories of electric bicycles and cars: 201611030277.4[P]. 2019-01-22. (in Chinese)
    [11] OLIVERA R, OLIVERA R, VITE O, et al. Application of the three state Kalman filtering for moving vehicle tracking[J]. IEEE Latin America Transactions, 2016, 14 (5) : 2072-2076. doi: 10.1109/TLA.2016.7530397
    [12] AHMADI P, TABANDEH M, GHOLAMPOUR I. Abnormal event detection and localisation in traffic videos based on group sparse topical coding[J]. IET Image Processing, 2016, 10(3): 235-246. doi: 10.1049/iet-ipr.2015.0399
    [13] 侯进辉, 曾焕强, 蔡磊, 等. 基于随机遮挡辅助深度表征学习的车辆再辨识[J]. 控制理论与应用, 2018, 35(12): 1725-1730. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201812004.htm

    HOU Jinhui, ZENG Huanqiang, CAI Lei, et al. Random occlusion assisted deep representation learning for vehicle re-identification[J]. Control Theory & Applications. 2018, 35(12): 1725-1730. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201812004.htm
    [14] TALMALE S, UNNIKRISHNAN S, LANDE B K. Distance increasing mapping for variable distance block code[J]. IET Communications, 2020, 14(9): 1495-1501. doi: 10.1049/iet-com.2019.0875
    [15] ZAKARIA N J, SHAPIAI M I, FAUZI H, et al. Gradient-based edge effects on lane marking detection using a deep learning-based approach[J]. Arabian Journal for Science and Engineering, 2020(45): 10989-11006. doi: 10.1007/s13369-020-04918-4
    [16] 张大奇, 曲仕茹, 石爽. 基于序列图像运动分割的车辆边界轮廓提取算法[J]. 交通运输工程学报, 2009, 9(3): 1671-1637. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200903025.htm

    ZHANG Daqi, QU Shiru, SHI Shuang. Edge detection algorithm of moving vehicle base on sequential image motion segmentation[J]. Journal of Traffic and Transportation Engineering, 2009, 9(3): 1671-1637. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200903025.htm
    [17] CAO Xianbin, LIN Renjun, YAN Pingkun. Visual attention accelerated vehicle detection in low-attitude airborne video of urban environment[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(3): 366-378. doi: 10.1109/TCSVT.2011.2163443
    [18] ELLENRIEDER K D. Dynamic surface control of trajectory tracking marine vehicles with actuator magnitude and rate limits[J]. Automatica, 2019(105): 433-442. http://www.sciencedirect.com/science/article/pii/S0005109819301785
    [19] 王宇宁, 庞智恒, 袁德明. 基于YOLO算法的车辆实时检测[J]. 武汉理工大学学报, 2016, 38(10): 41-46. doi: 10.3963/j.issn.1671-4431.2016.10.008

    WANG Yuning, PANG Zhiheng, YUAN Deming. Vehicle detection based on YOLO in real time[J]. Journal of Wuhan University of Technology, 2016, 38(10): 41-46. (in Chinese) doi: 10.3963/j.issn.1671-4431.2016.10.008
    [20] 赖见辉, 王扬, 罗甜甜, 等. 基于YOLO_V3的侧视视频交通流量统计方法与验证[J]. 公路交通科技, 2021, 38(1): 135-142. doi: 10.3969/j.issn.1002-0268.2021.01.017

    LAI Jianhui, WANG Yang, LUO Tiantian, et al. A YOLO_V3 based road-side video traffic volume counting method and verification[J]. Journal of Highway and Transportation Research and Development. 2021, 38(1): 135-142. (in Chinese) doi: 10.3969/j.issn.1002-0268.2021.01.017
    [21] 徐子睿, 刘猛, 谈雅婷. 基于YOLOv4的车辆检测与流量统计研究[J]. 现代信息科技, 2020(15): 98-100+103. https://www.cnki.com.cn/Article/CJFDTOTAL-XDXK202015031.htm

    XU Zirui, LIU Meng, TAN Yating. Research on vehicle detection and traffic statistics based on YOLOv4[J]. Modern Information Technology, 2020(15): 98-100+103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDXK202015031.htm
  • 加载中
图(10)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  254
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-07

目录

    /

    返回文章
    返回