A Green Wave Optimization Control Model of Trunk Buses Considering Green Extension
-
摘要: 针对绿灯延长控制策略使公交车辆在交叉口实际可通行时间大于社会车辆的事实,研究了考虑绿灯延长的干线信号协调优化控制模型。在MAXBAND模型考虑公交车运行速度和站点停靠时间的基础上,选择以绿灯起点作为绝对相位差的计算依据,结合最大延长绿灯时间改进对公交车辆的绿波带宽约束和时间-距离的几何关系约束,并使用Matlab求解改进模型相关参数。选取平均排队长度、社会车辆平均延误、公交车平均延误、平均停车次数和人均延误作为模型的评价指标,并使用Vissim软件对其仿真实验。实验结果表明,在无公交专用道且不考虑车辆排队影响的情况下,改进模型相较于在MAXBAND基础上考虑公交车行驶速度和靠站停车时间模型而言,5个评价指标均至少提升了2.87%;相较于MAXBAND模型而言,由于改进模型未考虑交叉口车辆排队情况,公交车平均延误增加了1.87%,但其他4个指标均至少提升了1.71%。Abstract: Since the actual travel time of buses at intersections is longer than that of social vehicles due to the green light extension control strategy, this paper proposes an optimization control model of trunk line signal coordination considering a green extension. The starting point of the green light is selected as the basis for calculating the absolute phase difference, considering the bus running speed and stop time in the MAXBAND model. The maximum green extension time is combined to improve the constraints on the green wave bandwidth and the time-distance geometric relation of the bus. Matlab is used to solve the relevant parameters of the improved model. The average queue length, the average delay of social vehicles, the average delay of buses, the average number of stops, and the average delay per person are selected as the evaluation indices of the model, and a simulation is conducted with Vissim software. The results show that when there is no bus lane, and the influences of vehicles queuing is not taken into account, the five evaluation indices of the improved model are improved by at least 2.87% compared with the model based on MAXBAND considering the bus traveling speed and stop time. Compared with the MAXBAND model, the average delay of buses increased by 1.87% in the improved model because the queuing situation of vehicles at intersections is not taken into account; however, the other four indices all increase by 1.71% at least.
-
表 1 路段长度
Table 1. Length of the road section
路段编号 1 2 3 4 长度/m 557 544 570 510 表 2 交叉口各方向社会车辆交通量分配结果
Table 2. Result of social traffic distribution in all directions
pcu/h 交叉口 东进口 南进口 西进口 北进口 左 直 右 左 直 右 左 直 右 左 直 右 1 152 458 162 169 558 127 89 356 96 150 592 181 2 124 481 145 152 523 229 79 461 93 246 664 139 3 127 354 121 189 1 977 166 223 478 235 132 161 3 207 4 42 572 58 16 131 16 69 626 81 14 114 14 5 213 402 254 140 1 786 223 145 343 168 215 172 2 130 表 3 交叉口各方向公交车交通量分配结果
Table 3. Results of bus traffic distribution in all directions
veh/h 交叉口 东进口 南进口 西进口 北进口 左 直 右 左 直 右 左 直 右 左 直 右 1 15 46 16 17 56 13 9 36 10 15 59 18 2 12 48 15 15 52 23 8 47 9 24 66 14 3 10 35 12 19 85 7 22 48 24 8 87 21 4 0 57 0 0 0 0 0 63 0 0 0 0 5 21 38 25 9 91 22 14 34 15 22 89 10 表 4 协调相位交叉口信号配时
Table 4. Signal timing of coordinated phase intersections
交叉口 1 2 3 4 5 绿灯时长/s 28 26 32 67 30 红灯时长/s 113 114 109 70 111 最大绿灯时长/s 39 26 43 75 41 表 5 不同模型绝对相位差
Table 5. Absolute phase difference of different models
s 交叉口 1 2 3 4 5 MAXBAND模型 63 0 78 0 73 模型2 44 0 81 107 71 模型3 98 0 57 2 71 表 6 不同模型绿波带宽
Table 6. Green wave bandwidths of different models
s 绿波带宽 上行带宽 下行带宽 社会车辆 公交车 社会车辆 公交车 MAXBAND模型 26 - 26 - 模型2 6 26 26 1 模型3 6 13 26 25 表 7 不同模型评价指标结果
Table 7. Evaluation indices of different models
模型 平均排队长度/m 社会车辆平均延误/s 公交车平均延误/s 平均停车次数 人均延误/s MAXBAND模型 64.43 35.34 15.17 0.63 34.94 模型2 63.76 36.15 15.90 0.64 35.89 模型3 59.63 34.71 15.46 0.61 34.35 表 8 不同模型评价指标变化程度
Table 8. Change scope of evaluation indices of different models
% 对比模型 平均排队长度 社会车辆平均延误 公交车平均延误 平均停车次数 人均延误 MAXBAND模型 8.06 1.80 -1.87 4.10 1.71 模型2 6.94 4.14 2.87 4.56 4.48 -
[1] 万孟飞. 道路交通干线协调优化方法研究[D]. 青岛: 青岛理工大学, 2016.WANG Mengfei. Research on optimization of road traffic arterial coordination[D]. Qingdao: Qingdao University of Technology, 2016. (in Chinese) [2] LIU Yue, CHANG Ganglen. An arterial signal optimization model for intersections experiencing queue spillback and lane blockage[J]. Transportation Research Part C: Emerging Technologies, 2010, 19(1): 130-144. http://www.sciencedirect.com/science/article/pii/S0968090X10000720 [3] PARR Scott A, KAISAR Evangelos. Critical intersection signal optimization during urban evacuation utilizing dynamic programming[J]. Journal of Transportation Safety & Security, 2011, 3(1): 59-76. [4] 龙科军, 高志波, 吴伟, 等. 城市道路干线信号协调控制与车速引导集成优化[J]. 长安大学学报(自然科学版), 2018, 38(2): 94-102. doi: 10.3969/j.issn.1671-8879.2018.02.012LONG Kejun, GAO Zhibo, WU Wei, et al. Integrated optimization for urban arterial traffic signal coordination and vehicle active speed guidance[J]. Journal of Chang'an University(Natural Science Edition), 2018, 38(2): 94-102. (in Chinese) doi: 10.3969/j.issn.1671-8879.2018.02.012 [5] 唐克双, 孔涛, 王奋, 等. 一种改进的多带宽干线协调控制模型[J]. 同济大学学报(自然科学版), 2013, 41(7): 1002-1008. doi: 10.3969/j.issn.0253-374x.2013.07.007TANG Keshuang, KONG Tao, WANG Fen, et al. A modified MULTIBAND model for urban arterial coordinate control[J]. Journal of Tongji University(Natural Science), 2013, 41(7): 1002-1008. (in Chinese) doi: 10.3969/j.issn.0253-374x.2013.07.007 [6] 郜轶敏, 张存保, 韦媛媛, 等. 考虑可变导向车道的干线交叉口协调控制方法[J]. 交通信息与安全, 2019, 37(5): 54-62. http://www.jtxa.net/tiasn/paper/editpaper.do?flag=abstract&PAPERID=2019-00203GAO Yimin, ZHANG Cunbao, WEI Yuanyuan, et al. A method of coordinated control for arterial intersections with variable lanes[J]. Journal of Transport Information and Safety, 2019, 37 (5): 54-62. (in Chinese) http://www.jtxa.net/tiasn/paper/editpaper.do?flag=abstract&PAPERID=2019-00203 [7] CHO H J, HUANG T J, HUANG C C L. Path-based MAXBAND with green-split variables and traffic dispersion[J]. Transportmetrica B: Transport Dynamics, 2019, 7(1): 726-740. doi: 10.1080/21680566.2018.1493624 [8] 查伟雄, 蔡其燕, 李剑, 等. 边路车辆出入条件下城市干线信号协调相位差优化[J]. 吉林大学学报(工学版), 2021, 51 (2): 565-574. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202102021.htmZHA Weixiong, CAI Qiyan, LI Jian, et al. Optimization of offset of urban arterial signal coordination under the condition of vehicle entry and exit on side road[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(2): 565-574. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202102021.htm [9] 李科兴. 基于公交优先的绿波带优化控制方法研究[D]. 长春: 吉林大学, 2016.LI Kexing. Research on arterial coordinate combining with bus priority[D]. Changchun: Jilin University, 2016. (in Chinese) [10] ZHANG Weihua, LI Jun, DING Heng. Arterial traffic signal coordination model considering buses and social vehicles[J]. Journal of Southeast University(English Edition), 2020, 36 (2): 206-212. http://www.researchgate.net/publication/352279914_Arterial_traffic_signal_coordination_modelconsidering_buses_and_social_vehicles [11] 高静, 张俊友, 齐婷婷. 干线信号协调控制下的公交优先研究[J]. 山东理工大学学报(自然科学版), 2013, 27(4): 25-29. doi: 10.3969/j.issn.1672-6197.2013.04.006GAO Jing, ZHANG Junyou, QI Tingting. Bus signal priority under arterial signal coordination[J]. Journal of Shandong University of Technology(Natural Science Edition), 2013, 27(4): 25-29. (in Chinese) doi: 10.3969/j.issn.1672-6197.2013.04.006 [12] SKABARDONIS A. Control strategies for transit priority[J]. Transportation Research Record Journal of the Transportation Research Board, 2000, 1727(1): 20-26. doi: 10.3141/1727-03 [13] 高永博. 干线公交优先协调控制及仿真[D]. 兰州: 兰州交通大学, 2019.GAO Yongbo. Bus priority coordination control and simulation on arteries[D]. Lanzhou: Lanzhou Jiaotong University, 2019. (in Chinese) [14] YAO Danya, SU Yuelong, ZHANG Yi, et al. Control strategies for transit priority based on queue modeling and surrogate testing[J]. Journal of Intelligent Transportation Systems, 2009, 13 (3): 142-148. doi: 10.1080/15472450903084287 [15] CHEN Wenkuo, HUANG Hengchiang, CHOU Sengcho T. Real-time online single point control strategy for transit priority[J]. Journal of Highway and Transportation Research and Development, 2011, 28(4): 112-111. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GLJK201104020.htm [16] 李振龙, 朱明浩, 王保菊, 等. 考虑上下游交叉口延误的干线公交优先模型[J]. 交通信息与安全, 2015, 33(5): 36-42. http://www.jtxa.net/tiasn/paper/editpaper.do?flag=abstract&PAPERID=2015-00174LI Zhenlong, ZHU Minghao, WANG Baoju, et al. A transit priority model for arterial roads based on the delays of upstream and downstream intersections[J]. Journal of Transport Information and Safety, 2015, 33(5): 36-42. (in Chinese) http://www.jtxa.net/tiasn/paper/editpaper.do?flag=abstract&PAPERID=2015-00174 [17] 于杰. 考虑公交优先的改进韦伯斯特信号配时模型研究[D]. 南京: 东南大学, 2015.YU Jie. The theory, method and mplementation of signal operation considering TSP[D]. Nanjing: Southeast University, 2015. (in Chinese) [18] 吴仁良, 杨浩, 刘通. 道路交叉口信号控制效益评价指标及方法[J]. 南京师大学报(自然科学版), 2019, 42(2): 37-43. doi: 10.3969/j.issn.1001-4616.2019.02.006WU Renliang, YANG Hao, LIU Tong. Benefit evaluation index and methods for road intersection signal control[J]. Journal of Nanjing Normal University(Natural Science Edition), 2019, 42(2): 37-43. (in Chinese) doi: 10.3969/j.issn.1001-4616.2019.02.006 [19] 赵星, 林灏, 刘艺, 等. 城市道路交叉口信号控制策略综合评价[J]. 重庆交通大学学报(自然科学版), 2020, 39(5): 7-13+31. doi: 10.3969/j.issn.1674-0696.2020.05.02ZHAO Xing, LIN Hao, LIU Yi, et al. Comprehensive evaluation of signal control strategy at urban road intersection[J]. Journal of Chongqing Jiaotong University(Natural Science), 2020, 39(5): 7-13+31. (in Chinese) doi: 10.3969/j.issn.1674-0696.2020.05.02 [20] 蔡晓禹, 吕亮, 卢凯明, 等. 轨迹数据驱动的单点信号交叉口运行效率评价方法[J]. 交通运输系统工程与信息, 2021, 21(1): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202101011.htm