Citation: | CHEN Lijia, ZHOU Naiqi, LI Shigang, LIU Kezhong, WANG Kai, ZHOU Yang. A Method of Ship Trajectory Prediction Based on a C-Informer Model[J]. Journal of Transport Information and Safety, 2023, 41(6): 51-60. doi: 10.3963/j.jssn.1674-4861.2023.06.006 |
[1] |
郁舒昊, 周辉, 叶春杨, 等. SDFA: 基于多特征融合的船舶轨迹聚类方法研究[J]. 计算机科学, 2022, 49(增刊1): 256-260. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2022S1039.htm
YU S H, ZHOU H, YE Y Q, et al. SDFA: study on ship trajectory clustering method based on multifeature fusion[J]. Computer Science, 2022, 49(S1): 256-260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2022S1039.htm
|
[2] |
SUO Y, CHEN W, CLARAMUNT C, et al. A ship trajectory prediction framework based on a recurrent neural network[J]. Sensors, 2020, 20(18): 5133. doi: 10.3390/s20185133
|
[3] |
CHEN L, YANG P, LI S, et al. Online modeling and prediction of maritime autonomous surface ship maneuvering motion under ocean waves[J]. Ocean Engineering, 2023, 276: 114183. doi: 10.1016/j.oceaneng.2023.114183
|
[4] |
VOLKOVA T A, BALYKINA Y E, BESPALOV A. Predicting ship trajectory based on neural networks using AIS data[J]. Journal of Marine Science and Engineering, 2021, 9(3): 254. doi: 10.3390/jmse9030254
|
[5] |
ZHENG Y, LYU X, QIAN L, et al. An optimal BP neural net-work track prediction method based on a GA-ACO hybrid algorithm[J]. Journal of Marine Science and Engineering, 2022, 10(10): 1399. doi: 10.3390/jmse10101399
|
[6] |
甄荣, 金永兴, 胡勤友, 等. 基于AIS信息和BP神经网络的船舶航行行为预测[J]. 中国航海, 2017, 40(2): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201702002.htm
ZHEN R, JIN Y X, HU Q Y, et al. Vessel behavior prediction based on AIS data and BP neural network[J]. Navigation of China, 2017, 40(2): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201702002.htm
|
[7] |
胡玉可, 夏维, 胡笑旋, 等. 基于循环神经网络的船舶轨迹预测[J]. 系统工程与电子技术, 2020, 42(4): 871-877. https://cdmd.cnki.com.cn/Article/CDMD-10151-1024310879.htm
HU Y K, XIA W, HU X X, et al. Vessel trajectory prediction based on recurrent neural network[J]. Systems Engineering and Electronics, 2020, 42(4): 871-877. (in Chinese) https://cdmd.cnki.com.cn/Article/CDMD-10151-1024310879.htm
|
[8] |
王知昊, 元海文, 李维娜, 等. 交汇水域船舶轨迹预测与航行意图识别[J]. 交通信息与安全, 2022, 40(4): 101-109. doi: 10.3963/j.jssn.1674-4861.2022.04.011
WANG Z H, YUAN H W, L W, et al. Trajectory prediction and intention identification of ships in confluence waters[J]. Journal of Transport Information and Safety, 2022, 40(4): 101-109. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.04.011
|
[9] |
ZHANG X, FU X, XIAO Z, et al. Vessel trajectory prediction in maritime transportation: Current approaches and beyond[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 19980-19998. doi: 10.1109/TITS.2022.3192574
|
[10] |
徐瑞龙, 祁云嵩, 石琳. 基于Transformer模型和Kalman滤波预测船舶航迹[J]. 计算机应用与软件, 2021, 38(5): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ202105019.htm
XU R L, QI Y S, SHI L. Predicting ship tracks based on transformer model and Kalman filtering[J]. Computer Applications and Software, 2021, 38(5): 106-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ202105019.htm
|
[11] |
JIANG D, SHI G, LI N, et al. TRFM-LS: transformer-based deep learning method for vessel trajectory prediction[J]. Journal of Marine Science and Engineering, 2023, 11(4): 880. doi: 10.3390/jmse11040880
|
[12] |
甘少君. 数据驱动的内河限制性单向航道船舶调度模型及方法研究[D]. 重庆: 重庆大学, 2017.
GAN S J. Study on data-driven vessel scheduling model and method for restricted one-way inland waterway transportation[D]. Chongqing: Chongqing University, 2017. (in Chinese)
|
[13] |
张黎翔, 朱怡安, 陆伟, 等. 基于AIS数据的船舶轨迹修复方法研究[J]. 西北工业大学学报, 2021, 39(1): 119-125. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD202101015.htm
ZHANG L X, ZHU Y A, LU W, et al. Research on ship trajectory repair method based on AIS data[J]. Journal of Northwestern Polytechnical University, 2021, 39(1): 119-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD202101015.htm
|
[14] |
潘侃, 尹春林, 王磊, 等. 基于特征工程的重要节点挖掘方法[J]. 电子科技大学学报, 2021, 50(6): 930-937. https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202106020.htm
PAN K, YIN C L, WANG L, et al. Identifying critical nodes based on feature engineering[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(6): 930-937. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202106020.htm
|
[15] |
马杰, 何沐蓉, 贾承丰, 等. 基于上下文自编码的船舶行为语义表征[J]. 交通运输工程学报, 2022, 22(4): 334-347. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202204026.htm
MA J, HE M R, JIA C F, et al. Semantic representation of ship behavior based on context autoencoder[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 334-347. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202204026.htm
|
[16] |
张牧行, 申晓红, 何磊, 等. 1种水下目标识别的最大信息系数特征选择方法[J]. 西北工业大学学报, 2020, 38(3): 471-477. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD202003003.htm
ZHANG M X, SHEN X H, HE L, et al. A maximum information coefficient feature selection method for underwater target recognition[J]. Journal of Northwestern Polytechnical University, 2020, 38(3): 471-477. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD202003003.htm
|
[17] |
权波, 杨博辰, 胡可奇, 等. 基于LSTM的船舶轨迹预测模型[J]. 计算机科学, 2018, 45(S2): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202306006.htm
QUAN B, YANG B C, HU K Q, et al. Prediction model of ship trajectory based on LSTM[J]. Computer Science, 2018, 45(S2): 126-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202306006.htm
|
[18] |
吴建华, 彭虎, 王辰, 等. 基于AIS通信量的水上交通事故检测方法[J]. 交通信息与安全, 2023, 41(5): 83-94. doi: 10.3963/j.jssn.1674-4861.2023.05.009
WU J H, PENG H, WANG C, et al. A detection method for maritime traffic accidents based on AIS communication volume[J]. Journal of Transport Information and Safety, 2023, 41(5): 83-94. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.05.009
|
[19] |
LI S, JIN X, XUAN Y, et al. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting[C]. 33rd Conference on Neural Information Processing Systems, Vancouver, Canada: NeurIPS, 2019.
|
[20] |
ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[C]. The 35th AAAI Conference on Artificial Intelligence. Online: AAAI, 2021.
|