Citation: | WANG Lili, ZHAO Yunfei. A Method for Predicting Air Traffic Flow Based on a Combined GA, RBF, and Improved Cao Method[J]. Journal of Transport Information and Safety, 2023, 41(1): 115-123. doi: 10.3963/j.jssn.1674-4861.2023.01.012 |
[1] |
PACKARD N H, CRUTCHFIELD J P, FARMER J D. Geometry from a time series[J]. Physics Review Letters, 1980, 45 (9): 712-713. doi: 10.1103/PhysRevLett.45.712
|
[2] |
LI S, XU X, MENG L. Flight conflict forecasting based on chaotic time series[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2012, 29(4): 388-394.
|
[3] |
王超, 郑旭芳, 王蕾. 交汇航路空中交通流的非线性特征研究[J]. 西南交通大学学报, 2017, 52(1): 171-178. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201701024.htm
WANG C, ZHENG X F, WANG L. Research on nonlinear characteristics of air traffic flows on converging air routes[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 171-178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201701024.htm
|
[4] |
杨阳. 空中交通流量短期预测方法研究[D]. 天津: 中国民航大学, 2017.
YANG Y. Research on short term forecasting method of air traffic flow[D]. Tianjin: Civil Aviation University of China, 2017. (in Chinese)
|
[5] |
王飞. 空中交通流非线性分形特征[J]. 西南交通大学学报, 2019, 54(6): 1147-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201906004.htm
WANG F. Nonlinear fractal characteristics of air traffic flow[J]. Journal of Southwest Jiaotong University, 2019, 54 (6): 1147-1154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201906004.htm
|
[6] |
丛玮. 空中交通多尺度行为模式识别方法研究[D]. 南京: 南京航空航天大学, 2016.
CONG W. Research on the recognition method of multi-scale behavior patterns in air traffic management[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
|
[7] |
杨阳, 王超. 空中交通流扇区内飞行流量优化预测管理[J]. 计算机仿真, 2017, 34(9): 74-78.
YANG Y, WANG C. Forecasting and management of flight in air traffic flow sector[J]. Computer Simulation, 2017, 34(9): 74-78. (in Chinese)
|
[8] |
王超, 朱明, 赵元棣. 基于改进加权一阶局域法的空中交通流量预测模型[J]. 西南交通大学学报, 2018, 53(1): 206-213.
WANG C, ZHU M, ZHAO Y D. Air traffic flow prediction model based on improved adding-weighted one-rank local-rejion method[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 206-213. (in Chinese)
|
[9] |
王飞, 韩翔宇. 基于分形插值的空中交通流量短期预测[J]. 航空学报, 2022, 43(9): 513-520.
WANG F, HAN X Y. Short-term prediction of air traffic flow based on fractal interpolation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 513-520. (in Chinese)
|
[10] |
潘志毅. 基于灰色神经网络的空中交通流量预测方法[J]. 微计算机信息, 2011, 27(9): 163-164.
PAN Z Y. Air traffic flow forecast method based on grey neural network[J]. Microcomputer Information, 2011, 27(9): 163-164. (in Chinese)
|
[11] |
崔德光, 吴淑宁, 徐冰. 空中交通流量预测的人工神经网络和回归组合方法[J]. 清华大学学报(自然科学版), 2005 (1): 96-99.
CUI D G, WU S N, XU B. Air traffic flow forecasts based on artificial neural networks combined with regression methods[J]. Journal of Tsinghua University(Science and Technology), 2005(1): 96-99. (in Chinese)
|
[12] |
ZHANG Z, ZHANG A, SUN C, et al. Research on air traffic flow forecast based on ELM non-iterative algorithm[J]. Mobile Networks and Applications, 2021(26): 425-439.
|
[13] |
LIN Y, ZHANG J, LIU H. Deep learning based short-term air traffic flow prediction considering temporal-spatial correlation[J]. Aerospace Science and Technology, 2019(93): 105-113.
|
[14] |
YANG Z, WANG Y, LI J, et al. Airport arrival flow prediction considering meteorological factors based on deep-learning methods[J]. Complexity, 2020(1): 1-11.
|
[15] |
TAKENS F. Detecting strange attractors in fluid in turbulence[J]. Lecture Notes in Mathematics, 1981(898): 361-381.
|
[16] |
张玉梅. 交通流时间序列的分析与应用[M]. 北京: 科学出版社, 2019.
ZHANG Y M. Analysis and application of traffic flow time series[M]. Beijing: Science Press, 2019. (in Chinese)
|
[17] |
KENNEL M B, BROWN R, ABARBANEL H D I. Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Physical Review A, 1992 (45): 3403-3411.
|
[18] |
CAO L. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D: Nonlinear Phenomena, 1997, 110(1/2): 43-50.
|
[19] |
张敏. 基于RBF神经网络的短时交通流预测研究[D]. 兰州: 兰州理工大学, 2021.
ZHANG M. Research on short-term traffic flow forecasting based on RBF neural network[D]. Lanzhou: Lanzhou University of Technology, 2021. (in Chinese)
|
[20] |
张玉梅, 曲仕茹, 温凯歌. 基于混沌和RBF神经网络的短时交通流量预测[C]. 2007全国控制科学与工程博士生学术论坛, 上海: 中国机械工程学会, 2007.
ZHANG Y M, QU S R, WEN K G. A short-term traffic flow forecasting method based on chaos and RBF neural network[C]. 2007 National Control Science and Engineering Doctoral Academic Forum, Shanghai: Chinese Mechanical Engineering Society, 2007. (in Chinese)
|
[21] |
刘凌, 李志成, 张莹. 面向双关节机械臂的参数可调RBF神经网络控制[J]. 西安交通大学学报. 2021. 55(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202104001.htm
LIU L, LI Z C, ZHANG Y. A RBF network control with adjustable parameters for 2-yoint robot manipulators[J]. Journal of Xi'An Jiaotong University, 2021, 55(4): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202104001.htm
|
[22] |
张勇. 交通流的非线性分析、预测和控制[D]. 北京: 北京交通大学, 2011.
ZHANG Y. Nonlinear characteristics analysis, predication and control of traffic flow[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese)
|
[23] |
张海龙, 闵富红, 王恩荣. 关于Lyapunov指数计算方法的比较[J]. 南京师范大学学报(工程技术版), 2012, 12(1): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-NJSE201201004.htm
ZHANG H L, MIN F H, WANG E R. The comparison for Lyapunov exponents calculation methods[J]. Journal of Nanjing Normal University(Engineering and Technology Edition). 2012, 12(1): 5-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJSE201201004.htm
|