Volume 41 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
WANG Lili, ZHAO Yunfei. A Method for Predicting Air Traffic Flow Based on a Combined GA, RBF, and Improved Cao Method[J]. Journal of Transport Information and Safety, 2023, 41(1): 115-123. doi: 10.3963/j.jssn.1674-4861.2023.01.012
Citation: WANG Lili, ZHAO Yunfei. A Method for Predicting Air Traffic Flow Based on a Combined GA, RBF, and Improved Cao Method[J]. Journal of Transport Information and Safety, 2023, 41(1): 115-123. doi: 10.3963/j.jssn.1674-4861.2023.01.012

A Method for Predicting Air Traffic Flow Based on a Combined GA, RBF, and Improved Cao Method

doi: 10.3963/j.jssn.1674-4861.2023.01.012
  • Received Date: 2022-06-02
    Available Online: 2023-05-13
  • Considering the chaotic characteristic of air traffic flow time series data, a prediction model based on the phase space reconstruction theory is proposed to improve the accuracy and effectiveness of previous air traffic flow prediction methods, which combines genetic algorithm (GA), radial basis function (RBF) neural network (NN) and improved Cao method. First, to reduce the error introduced by the human in the traditional Cao method and improve the accuracy of phase space reconstruction, the criteria for determining the dimension of the reconstructed phase space is developed by identifying false neighboring points and iteratively comparing the deviation of the embedded dimension with its acceptable limits. In this way, reconstructed air traffic flow time series data is developed. Secondly, to improve the prediction accuracy of the traditional RBF neural network, GA is employed to optimize center vectors, weight coefficients, and output layer thresholds of the neural network. Then, the reconstructed time series are predicted by the calibrated RBF neural network with optimal coefficients. Finally, the proposed method is verified using the observed air traffic flow data, the effectiveness of the prediction is evaluated, and the influence of the time scale on the accuracy is analyzed by incorporating the maximal Lyapunov exponent and the quality of the prediction. Study results show that ①the proposed method fits the nonlinear data well and improves the accuracy of traffic flow prediction. ②Taking the prediction with a 5-min time interval as the instance, compared with the traditional RBF neural network, the mean absolute errors (MAE), mean square errors (MSE) and mean absolute percentage error (MAPE) is reduced by 19.44%, 34.78%, and 27.21%, respectively. ③Compared with the back propagation (BP) neural network and the long short-term memory (LSTM) neural network model, the MAE of the proposed method is reduced by 36.20% and 16.10%, respectively, and the response speed is increased by 27.42% and 35.00%. In summary, the proposed method can explain the intricate chaotic properties of the system and improves the accuracy and efficiency of air traffic flow prediction.

     

  • loading
  • [1]
    PACKARD N H, CRUTCHFIELD J P, FARMER J D. Geometry from a time series[J]. Physics Review Letters, 1980, 45 (9): 712-713. doi: 10.1103/PhysRevLett.45.712
    [2]
    LI S, XU X, MENG L. Flight conflict forecasting based on chaotic time series[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2012, 29(4): 388-394.
    [3]
    王超, 郑旭芳, 王蕾. 交汇航路空中交通流的非线性特征研究[J]. 西南交通大学学报, 2017, 52(1): 171-178. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201701024.htm

    WANG C, ZHENG X F, WANG L. Research on nonlinear characteristics of air traffic flows on converging air routes[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 171-178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201701024.htm
    [4]
    杨阳. 空中交通流量短期预测方法研究[D]. 天津: 中国民航大学, 2017.

    YANG Y. Research on short term forecasting method of air traffic flow[D]. Tianjin: Civil Aviation University of China, 2017. (in Chinese)
    [5]
    王飞. 空中交通流非线性分形特征[J]. 西南交通大学学报, 2019, 54(6): 1147-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201906004.htm

    WANG F. Nonlinear fractal characteristics of air traffic flow[J]. Journal of Southwest Jiaotong University, 2019, 54 (6): 1147-1154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201906004.htm
    [6]
    丛玮. 空中交通多尺度行为模式识别方法研究[D]. 南京: 南京航空航天大学, 2016.

    CONG W. Research on the recognition method of multi-scale behavior patterns in air traffic management[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
    [7]
    杨阳, 王超. 空中交通流扇区内飞行流量优化预测管理[J]. 计算机仿真, 2017, 34(9): 74-78.

    YANG Y, WANG C. Forecasting and management of flight in air traffic flow sector[J]. Computer Simulation, 2017, 34(9): 74-78. (in Chinese)
    [8]
    王超, 朱明, 赵元棣. 基于改进加权一阶局域法的空中交通流量预测模型[J]. 西南交通大学学报, 2018, 53(1): 206-213.

    WANG C, ZHU M, ZHAO Y D. Air traffic flow prediction model based on improved adding-weighted one-rank local-rejion method[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 206-213. (in Chinese)
    [9]
    王飞, 韩翔宇. 基于分形插值的空中交通流量短期预测[J]. 航空学报, 2022, 43(9): 513-520.

    WANG F, HAN X Y. Short-term prediction of air traffic flow based on fractal interpolation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 513-520. (in Chinese)
    [10]
    潘志毅. 基于灰色神经网络的空中交通流量预测方法[J]. 微计算机信息, 2011, 27(9): 163-164.

    PAN Z Y. Air traffic flow forecast method based on grey neural network[J]. Microcomputer Information, 2011, 27(9): 163-164. (in Chinese)
    [11]
    崔德光, 吴淑宁, 徐冰. 空中交通流量预测的人工神经网络和回归组合方法[J]. 清华大学学报(自然科学版), 2005 (1): 96-99.

    CUI D G, WU S N, XU B. Air traffic flow forecasts based on artificial neural networks combined with regression methods[J]. Journal of Tsinghua University(Science and Technology), 2005(1): 96-99. (in Chinese)
    [12]
    ZHANG Z, ZHANG A, SUN C, et al. Research on air traffic flow forecast based on ELM non-iterative algorithm[J]. Mobile Networks and Applications, 2021(26): 425-439.
    [13]
    LIN Y, ZHANG J, LIU H. Deep learning based short-term air traffic flow prediction considering temporal-spatial correlation[J]. Aerospace Science and Technology, 2019(93): 105-113.
    [14]
    YANG Z, WANG Y, LI J, et al. Airport arrival flow prediction considering meteorological factors based on deep-learning methods[J]. Complexity, 2020(1): 1-11.
    [15]
    TAKENS F. Detecting strange attractors in fluid in turbulence[J]. Lecture Notes in Mathematics, 1981(898): 361-381.
    [16]
    张玉梅. 交通流时间序列的分析与应用[M]. 北京: 科学出版社, 2019.

    ZHANG Y M. Analysis and application of traffic flow time series[M]. Beijing: Science Press, 2019. (in Chinese)
    [17]
    KENNEL M B, BROWN R, ABARBANEL H D I. Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Physical Review A, 1992 (45): 3403-3411.
    [18]
    CAO L. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D: Nonlinear Phenomena, 1997, 110(1/2): 43-50.
    [19]
    张敏. 基于RBF神经网络的短时交通流预测研究[D]. 兰州: 兰州理工大学, 2021.

    ZHANG M. Research on short-term traffic flow forecasting based on RBF neural network[D]. Lanzhou: Lanzhou University of Technology, 2021. (in Chinese)
    [20]
    张玉梅, 曲仕茹, 温凯歌. 基于混沌和RBF神经网络的短时交通流量预测[C]. 2007全国控制科学与工程博士生学术论坛, 上海: 中国机械工程学会, 2007.

    ZHANG Y M, QU S R, WEN K G. A short-term traffic flow forecasting method based on chaos and RBF neural network[C]. 2007 National Control Science and Engineering Doctoral Academic Forum, Shanghai: Chinese Mechanical Engineering Society, 2007. (in Chinese)
    [21]
    刘凌, 李志成, 张莹. 面向双关节机械臂的参数可调RBF神经网络控制[J]. 西安交通大学学报. 2021. 55(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202104001.htm

    LIU L, LI Z C, ZHANG Y. A RBF network control with adjustable parameters for 2-yoint robot manipulators[J]. Journal of Xi'An Jiaotong University, 2021, 55(4): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202104001.htm
    [22]
    张勇. 交通流的非线性分析、预测和控制[D]. 北京: 北京交通大学, 2011.

    ZHANG Y. Nonlinear characteristics analysis, predication and control of traffic flow[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese)
    [23]
    张海龙, 闵富红, 王恩荣. 关于Lyapunov指数计算方法的比较[J]. 南京师范大学学报(工程技术版), 2012, 12(1): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-NJSE201201004.htm

    ZHANG H L, MIN F H, WANG E R. The comparison for Lyapunov exponents calculation methods[J]. Journal of Nanjing Normal University(Engineering and Technology Edition). 2012, 12(1): 5-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJSE201201004.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (696) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return