Volume 39 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
FENG Ruyi, LI Zhibin, WU Qifan, FAN Changyan. Association of Vehicle Object Detection and the Time-space Trajectory Matching from Aerial Videos[J]. Journal of Transport Information and Safety, 2021, 39(2): 61-69, 77. doi: 10.3963/j.jssn.1674-4861.2021.02.008
Citation: FENG Ruyi, LI Zhibin, WU Qifan, FAN Changyan. Association of Vehicle Object Detection and the Time-space Trajectory Matching from Aerial Videos[J]. Journal of Transport Information and Safety, 2021, 39(2): 61-69, 77. doi: 10.3963/j.jssn.1674-4861.2021.02.008

Association of Vehicle Object Detection and the Time-space Trajectory Matching from Aerial Videos

doi: 10.3963/j.jssn.1674-4861.2021.02.008
  • Received Date: 2020-07-06
  • High resolution track data contains rich information about vehicle travel and traffic flow. The fusion method of cross-frame vehicle detection association and trajectory matching is developed to extract the vehicle trajectories from the aerial video. The convolutional neural network, YOLOv5, is used to obtain video-wide vehicle object detection. Base on the result of detection, a correlation algorithm of a cross-frame target under the constraints of vehicle dynamics and trajectory confidence is proposed. Then, broken track matching and constructing algorithms based on the maximum correlation are established for identifying unique vehicles. The trajectory is converted from image coordinates to Freenet coordinates under lane reference, and the ensemble empirical mode decomposition(EEMD)model has been constructed to eliminate data noise. Two sets of open-source aerial videos, coving congestion and free-flow traffic status, are taken by a drone on the Nanjing expressway to test the effect of the trajectory extraction algorithm. The results show that the trajectory accuracies are 98.86 and 98.83% under the free flow and congested conditions, respectively. Besides, the track recall rates are 93.00 and 86.69%. The trajectory extraction speed of the algorithm is 0.07 s/vehicle/m. The vehicle trajectory dataset processed by this method can provide extensive data support for traffic flow, traffic safety, and traffic control research. The dataset is published at http://seutraffic.com/.

     

  • loading
  • [1]
    赵秀江. 基于视频图像处理技术的行车轨迹线采集及其分析研究[D]. 长沙: 湖南大学, 2012.

    ZHAO Xiujiang. Collection and analysis research of travel trajectory line based on image processing technology[D]. Changsha: Hunan University, 2012. (in Chinese)
    [2]
    刘晨强. 车辆轨迹数据与换道行为特性研究[D]. 北京: 北京工业大学, 2018.

    LIU Chenqiang. Research of vehicle trajectory data and lane change characteristics[D]. Beijing: Beijing University of Technology, 2018. in Chinese
    [3]
    Federal Highwavy Administration. Next generation simulation (NGSIM) vehicle trajectories and supporting data[EB/OL]. (2006-12-1)[2021-03-11]. https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Vehicle-Trajector/ 8ect-6jqj.
    [4]
    MONTANINO M, PUNZO V. Making NGSIM data usable for studies on traffic flow theory: multistep method for vehicle trajectory reconstruction[J]. Transportation Research Record: Journal of the Transportation Research Board, 2013(2390): 99-111. http://www.researchgate.net/profile/Marcello_Montanino/publication/269853999_Making_NGSIM_Data_Usable_for_Studies_on_Traffic_Flow_Theory/links/54abda5a0cf25c4c472fb1bb.pdf
    [5]
    石建军, 刘晨强. NGSIM车辆轨迹重构[J]. 北京工业大学学报, 2019, 45(6): 601-609. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201906010.htm

    SHI Jianjun, LIU Chenqiang. Trajectory reconstruction of vehicles in NGSIM[J]. Journal of Beijing University of Technology, 2019, 45(6): 601-609. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201906010.htm
    [6]
    PUNZO V, BORZACCHIELLO M T, CIUO B. On the assessment of vehicle trajectory data accuracy and application to the Next Generation Simulation(NGSIM)program data[J]. Transportation Research Part C: Emerging Technologies, 2011(19), 1243-1262.
    [7]
    姬红利. 基于航拍视频的多目标检测和跟踪[D]. 天津: 天津大学, 2014.

    JI Hongli. Multiple target detection and tracking based on aerial videos[D]. Tianjin: Tianjin University, 2014. (in Chinese)
    [8]
    EMMANOUIL N B, ELENI I V, JOHN C G. Unmanned aerial aircraft systems for transportation engineering: Current practice and future challenges[J]. International Journal of Transportation Science and Technology, 2016, 5(3): 111-122. doi: 10.1016/j.ijtst.2017.02.001
    [9]
    成名, 金立左. 基于视觉显著性的航拍车辆检测[J]. 工业控制计算机, 2016(4): 75-77. doi: 10.3969/j.issn.1001-182X.2016.04.035

    CHENG Ming, JIN Lizuo. Aerial vehicle detection based on visual significance[J]. Industrial Control Computer, 2016(4): 75-77. (in Chinese) doi: 10.3969/j.issn.1001-182X.2016.04.035
    [10]
    毛征, 刘松松, 张辉等. 不同光照和姿态下的航拍车辆检测方法[J]. 北京工业大学学报, 2016, 42(7): 982-988. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201607004.htm

    MAO Zheng, LIU Songsong, ZHANG Hui. Vehicle detection from aerial photographing under different illumination and pose[J]. Journal of Beijing University of Technology, 2016, 42 (7): 982-988. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201607004.htm
    [11]
    XIAO Jiangjian, YANG Changjiang, HAN Feng, et al. Vehicle and person tracking in aerial videos[C]. Multimodal Technologies for Perception of Humans, Baltimore, USA: SpringerVerlag, 2007.
    [12]
    SALEEMI I, SHAH M. Multiframe many–many point correspondence for vehicle tracking in high density wide area aerial videos[J]. International Journal of Computer Vision, 2013 (104): 198-219. doi: 10.1007/s11263-013-0624-1
    [13]
    AZEVEDO C L, CARDOSO J L, BEN-AKIVA M, et al. Automatic vehicle trajectory extraction by aerial remote sensing[J]. ProcediaSocial and Behavioral Sciences, 2014(111): 849-858. http://www.sciencedirect.com/science/article/pii/S1877042814001207
    [14]
    CAO Xianbin, WU Changxia, LAN Jinhe, et al. Vehicle detection and motion analysis in low-altitude airborne video under urban environment[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(10): 1522-1533. doi: 10.1109/TCSVT.2011.2162274
    [15]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. Computer Vision & Pattern Recognition, Las Vegas, USA: IEEE, 2016.
    [16]
    FAN Q, BROWN L, SMITH J. A closer look at faster R-CNN for vehicle detection[C]. IEEE Intelligent Vehicles Symposium(IV), Gotenburg, Sweden: ITSS, 2016.
    [17]
    KUHN H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955(1/2): 83-97. http://bib.oxfordjournals.org/external-ref?access_num=10.1002/nav.3800020109&link_type=DOI
    [18]
    MAO Tianlu, WANG Hua, DENG Zhigang, et al. An efficientlane model for complex traffic simulation[J]. Computer Animation & Virtual Worlds, 2015, 26(3/4): 397-403.
    [19]
    WU Zhaohua, HUANG N E. Ensemble emprical mode decomposition: a noise-assisted data analysis algorithm[J]. Advances in Adaptive Data Analysis, 2009(1): 1-41.
    [20]
    CHEN Xinqiang, LI Zhibin, WANG Yinhai, et al. Anomaly detection and cleaning of highway elevation data from Google Earth using ensemble empirical mode decomposition[J]. Journal of Transportation Engineering, 2018, 144(5): 04018015.1-04018015.14. http://www.researchgate.net/publication/324014183_Anomaly_Detection_and_Cleaning_of_Highway_Elevation_Data_from_Google_Earth_Using_Ensemble_Empirical_Mode_Decomposition
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (730) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return